Journal of Computer-Aided Molecular Design

, Volume 29, Issue 8, pp 707–712 | Cite as

Molecular dynamics to enhance structure-based virtual screening on cathepsin B

  • Mitja Ogrizek
  • Samo Turk
  • Samo Lešnik
  • Izidor Sosič
  • Milan Hodošček
  • Bojana Mirković
  • Janko Kos
  • Dušanka Janežič
  • Stanislav Gobec
  • Janez Konc
Article

Abstract

Molecular dynamics (MD) and molecular docking are commonly used to study molecular interactions in drug discovery. Most docking approaches consider proteins as rigid, which can decrease the accuracy of predicted docked poses. Therefore MD simulations can be used prior to docking to add flexibility to proteins. We evaluated the contribution of using MD together with docking in a docking study on human cathepsin B, a well-studied protein involved in numerous pathological processes. Using CHARMM biomolecular simulation program and AutoDock Vina molecular docking program, we found, that short MD simulations significantly improved molecular docking. Our results, expressed with the area under the receiver operating characteristic curves, show an increase in discriminatory power i.e. the ability to discriminate active from inactive compounds of molecular docking, when docking is performed to selected snapshots from MD simulations.

Keywords

Cathepsin B Molecular dynamics Molecular docking Protein flexibility 

Supplementary material

10822_2015_9847_MOESM1_ESM.doc (552 kb)
Supplementary material 1 (DOC 552 kb)

References

  1. 1.
    Barrett AJ (1981) Cathepsin B, cathepsin H, and cathepsin L. Meth Enzymol 80:535–561CrossRefGoogle Scholar
  2. 2.
    Hook V, Toneff T, Bogyo M et al (2005) Inhibition of cathepsin B reduces β-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate β-secretase of Alzheimer’s disease. Biol Chem 386:1325CrossRefGoogle Scholar
  3. 3.
    Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6:764–775CrossRefGoogle Scholar
  4. 4.
    Illy C, Quraishi O, Wang J et al (1997) Role of the occluding loop in cathepsin B activity. J Biol Chem 272:1197–1202CrossRefGoogle Scholar
  5. 5.
    Almeida PC, Nantes IL, Chagas JR et al (2001) Cathepsin B activity regulation heparin-like glycosaminoglycans protect human cathepsin B from alkaline ph-induced inactivation. J Biol Chem 276:944–951CrossRefGoogle Scholar
  6. 6.
    Mirković B, Renko M, Turk S et al (2011) Novel mechanism of cathepsin B inhibition by antibiotic nitroxoline and related compounds. ChemMedChem 6:1351–1356CrossRefGoogle Scholar
  7. 7.
    Sosič I, Mirković B, Arenz K et al (2013) Development of new cathepsin B inhibitors: combining bioisosteric replacements and structure-based design to explore the structure–activity relationships of nitroxoline derivatives. J Med Chem 56:521–533CrossRefGoogle Scholar
  8. 8.
    Ripphausen P, Nisius B, Peltason L, Bajorath J (2010) Quo vadis, virtual screening? A comprehensive survey of prospective applications. J Med Chem 53:8461–8467CrossRefGoogle Scholar
  9. 9.
    Sastry GM, Adzhigirey M, Day T et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234CrossRefGoogle Scholar
  10. 10.
    Scior T, Bender A, Tresadern G et al (2012) Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model 52:867–881CrossRefGoogle Scholar
  11. 11.
    Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801CrossRefGoogle Scholar
  12. 12.
    Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594CrossRefGoogle Scholar
  13. 13.
    Nichols SE, Baron R, Ivetac A, McCammon JA (2011) Predictive power of molecular dynamics receptor structures in virtual screening. J Chem Inf Model 51:1439–1446CrossRefGoogle Scholar
  14. 14.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461Google Scholar
  15. 15.
    O’Boyle NM, Morley C, Hutchison GR (2008) Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit. Chem Cent J 2:5CrossRefGoogle Scholar
  16. 16.
    O'Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Cheminf 3:33Google Scholar
  17. 17.
    Landrum G (2006) RDKit: open-source cheminformatics. (Online). http://www.rdkit.org. Accessed 03/04/2012
  18. 18.
    Brooks BR, Brooks CL, MacKerell AD et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614CrossRefGoogle Scholar
  19. 19.
    Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  20. 20.
    Janežič D, Venable RM, Brooks BR (1995) Harmonic analysis of large systems. III. Comparison with molecular dynamics. J Comput Chem 16:1554–1566CrossRefGoogle Scholar
  21. 21.
    Schaftenaar G, Noordik JH (2000) Molden: a pre-and post-processing program for molecular and electronic structures*. J Comput Aided Mol Des 14:123–134CrossRefGoogle Scholar
  22. 22.
    Vanommeslaeghe K, Hatcher E, Acharya C et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all atom additive biological force fields. J Comput Chem 31:671–690Google Scholar
  23. 23.
    Vanommeslaeghe K, MacKerell AD Jr (2012) Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52:3144–3154CrossRefGoogle Scholar
  24. 24.
    Vanommeslaeghe K, Raman EP, MacKerell AD Jr (2012) Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52:3155–3168CrossRefGoogle Scholar
  25. 25.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  26. 26.
    Karaboga AS, Petronin F, Marchetti G et al (2013) Benchmarking of HPCC: a novel 3D molecular representation combining shape and pharmacophoric descriptors for efficient molecular similarity assessments. J Mol Graph Model 41:20–30CrossRefGoogle Scholar
  27. 27.
    Borštnik U, Hodošcek M, Janezic D (2004) Improving the performance of molecular dynamics simulations on parallel clusters. J Chem Inf Comput Sci 44:359–364CrossRefGoogle Scholar
  28. 28.
    Congreve M, Carr R, Murray C, Jhoti H (2003) A “rule of three”for fragment-based lead discovery? Drug Discov Today 8:876–877CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mitja Ogrizek
    • 1
  • Samo Turk
    • 2
    • 4
  • Samo Lešnik
    • 1
  • Izidor Sosič
    • 2
  • Milan Hodošček
    • 1
  • Bojana Mirković
    • 2
  • Janko Kos
    • 2
  • Dušanka Janežič
    • 3
  • Stanislav Gobec
    • 2
  • Janez Konc
    • 1
    • 3
  1. 1.National Institute of ChemistryLjubljanaSlovenia
  2. 2.Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Faculty of Mathematics, Natural Sciences, and Information TechnologiesUniversity of PrimorskaKoperSlovenia
  4. 4.BioMed X GmbHHeidelbergGermany

Personalised recommendations