Skip to main content
Log in

Design and characterization of chemical space networks for different compound data sets

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Chemical Space Networks (CSNs) are generated for different compound data sets on the basis of pairwise similarity relationships. Such networks are thought to complement and further extend traditional coordinate-based views of chemical space. Our proof-of-concept study focuses on CSNs based upon fingerprint similarity relationships calculated using the conventional Tanimoto similarity metric. The resulting CSNs are characterized with statistical measures from network science and compared in different ways. We show that the homophily principle, which is widely considered in the context of social networks, is a major determinant of the topology of CSNs of bioactive compounds, designed as threshold networks, typically giving rise to community structures. Many properties of CSNs are influenced by numerical features of the conventional Tanimoto similarity metric and largely dominated by the edge density of the networks, which depends on chosen similarity threshold values. However, properties of different CSNs with constant edge density can be directly compared, revealing systematic differences between CSNs generated from randomly collected or bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dobson CM (2004) Chemical space and biology. Nature 432:824–828

    Article  CAS  Google Scholar 

  2. Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modelling perspective. Med Res Rev 16:3–50

    Article  CAS  Google Scholar 

  3. Maggiora GM, Bajorath J (2014) Chemical space networks—a poweful new paradigm for the description of chemical space. J Comput-Aided Mol Des 28:795–802

    Article  CAS  Google Scholar 

  4. Pearlman R, Smith K (2002) Novel software tools for chemical diversity. 3D QSAR in drug design. Three-dimens Quant Struct-Act Relat 2:339–353

    Article  Google Scholar 

  5. Maggiora GM, Vogt M, Stumpfe D, Bajorath J (2014) Molecular similarity in medicinal chemistry. J Med Chem 57:3186–3204

    Article  CAS  Google Scholar 

  6. Wawer M, Peltason L, Weskamp N, Teckentrup A, Bajorath J (2008) Structure-activity relationship anatomy by network-like similarity graphs and local structure-activity relationship indices. J Med Chem 51:6075–6084

    Article  CAS  Google Scholar 

  7. Tanaka N, Ohno K, Niimi T, Moritomo A, Mori K, Orita M (2009) Small-world phenomena in chemical library networks: application to fragment-based drug discovery. J Chem Inf Model 49:2677–2686

    Article  CAS  Google Scholar 

  8. Krein MP, Sukumar N (2011) Exploration of the topology of chemical spaces with network measures. J Phys Chem A 115:12905–12918

    Article  CAS  Google Scholar 

  9. Fourches D, Tropsha A (2013) Using graph indices for the analysis and comparison of chemical data sets. Mol Inf 32:827–842

    Article  CAS  Google Scholar 

  10. Stumpfe D, Dimova D, Bajorath J (2014) Composition and topology of activity cliff clusters formed by bioactive compounds. J Chem Inf Model 54:451–461

    Article  CAS  Google Scholar 

  11. Watts D, Strogatz S (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  CAS  Google Scholar 

  12. Barabási A, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  Google Scholar 

  13. Newman M (2010) Networks—an introduction. Oxford University Press, New York

    Google Scholar 

  14. Newman M (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    Article  Google Scholar 

  15. Albert R, Barabási A (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Article  Google Scholar 

  16. McPherson M, Smith-Lovin L, Cook J (2001) Birds of a feather: homophily in social networks. Annu Rev Sociol 27:415–444

    Article  Google Scholar 

  17. Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J Chem Inf Comput Sci 38:983–996

    Article  CAS  Google Scholar 

  18. Newman M, Park J (2003) Why social networks are different from other types of networks. Phys Rev E 68:036122

    Article  CAS  Google Scholar 

  19. Foster D, Foster J, Grassberger P, Paczuski M (2011) Clustering drives assortativity and community structure in ensembles of networks. Phys Rev E 84:066117

    Article  Google Scholar 

  20. Newman M (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69:066133

    Article  CAS  Google Scholar 

  21. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768

    Article  CAS  Google Scholar 

  22. Willett P (1999) Dissimilarity-based algorithms for selecting structurally diverse sets of compounds. J Comput Biol 6:447–457

    Article  CAS  Google Scholar 

  23. MACCS Structural Keys; Accelrys, San Diego

  24. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(Database issue):D1100–D1107

    Article  CAS  Google Scholar 

  25. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754

    Article  CAS  Google Scholar 

  26. Java Universal Network/Graph Framework. http://jung.sourceforge.net. Accessed 12 Oct 2014

  27. Gavin A-C, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon A-M, Cruciat C-M (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M. Z. has partly been supported by the German Academic Exchange Service (Deutscher Akademischer Austauschdienst, DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bajorath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zwierzyna, M., Vogt, M., Maggiora, G.M. et al. Design and characterization of chemical space networks for different compound data sets. J Comput Aided Mol Des 29, 113–125 (2015). https://doi.org/10.1007/s10822-014-9821-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9821-4

Keywords

Navigation