Skip to main content

Advertisement

Log in

Exploring conformational search protocols for ligand-based virtual screening and 3-D QSAR modeling

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

3-D ligand conformations are required for most ligand-based drug design methods, such as pharmacophore modeling, shape-based screening, and 3-D QSAR model building. Many studies of conformational search methods have focused on the reproduction of crystal structures (i.e. bioactive conformations); however, for ligand-based modeling the key question is how to generate a ligand alignment that produces the best results for a given query molecule. In this work, we study different conformation generation modes of ConfGen and the impact on virtual screening (Shape Screening and e-Pharmacophore) and QSAR predictions (atom-based and field-based). In addition, we develop a new search method, called common scaffold alignment, that automatically detects the maximum common scaffold between each screening molecule and the query to ensure identical coordinates of the common core, thereby minimizing the noise introduced by analogous parts of the molecules. In general, we find that virtual screening results are relatively insensitive to the conformational search protocol; hence, a conformational search method that generates fewer conformations could be considered “better” because it is more computationally efficient for screening. However, for 3-D QSAR modeling we find that more thorough conformational sampling tends to produce better QSAR predictions. In addition, significant improvements in QSAR predictions are obtained with the common scaffold alignment protocol developed in this work, which focuses conformational sampling on parts of the molecules that are not part of the common scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

QSAR:

Quantitative structure activity relationship

LBDD:

Ligand-based drug design

AQSAR:

Atom-based QSAR

FQSAR:

Field-based QSAR

NRB :

Average number of rotatable bonds

NSR :

Average number of saturated rings

MCMM/LMOD:

Monte Carlo molecular mechanics and low mode

BEDROC:

Boltzmann-enhanced discrimination of the receiver operating characteristic

EF:

Enrichment factor

RMSD:

Root mean square deviation

CSA:

Common scaffold alignment

PLS:

Partial least-squares

ACE:

Angiotensin-converting enzyme

AChE:

Acetylcholinesterase

ADA:

Adenosine deaminase

ALR2:

Aldose reductase

AmpC:

AmpC β-lactamase

AR:

Androgen receptor

CDK2:

Cyclin-dependent kinase 2

COMT:

Catechol O-methyltransferase

COX1:

Cyclooxygenase-1

COX2:

Cyclooxygenase-2

DHFR:

Dihydrofolate reductase

EGFr:

Epidermal growth factor receptor

ER:

Estrogen receptor

FGFr1:

Fibroblast growth factor receptor kinase

fXa:

Factor Xa

GART:

Glycinamide ribonucleotide transformylase

GPB:

Glycogen phosphorylase β

GR:

Glucocorticoid receptor

HIVpr:

HIV protease

HIVrt:

HIV reverse transcriptase

HMGR:

Hydroxymethylglutaryl-CoA reductase

HSP90:

Human heat shock protein 90

InhA:

Enoyl ACP reductase

MR:

Mineralocorticoid receptor

NA:

Neuraminidase

P38:

P38 mitogen activated protein

PARP:

Poly(ADP-ribose) polymerase

PDE5:

Phosphodiesterase 5

PDGFrb:

Platelet derived growth factor receptor kinase

PNP:

Purine nucleoside phosphorylase

PPAR:

Peroxisome proliferator activated receptor γ

PR:

Progesterone receptor

RXR:

Retinoic X receptor R

SAHH:

S-adenosyl-homocysteine hydrolase

Src:

Tyrosine kinase SRC

TK:

Thymidine kinase

VEGFr2:

Vascular endothelial growth factor receptor

PTP1B:

Protein tyrosine phosphatase 1B

LCK:

Lymphocyte-specific tyrosine kinase

JNK:

c-Jun N-terminal kinase

ERK2:

Extracellular signal-regulated kinase 2

CHK1:

Checkpoint kinase 1

EPHX2:

Cytoplasmic epoxide hydrolase 2

UPA:

Urokinase-type plasminogin activator

DPP4:

Dipeptidyl peptidase IV

References

  1. Koeppen H, Kriegl J, Lessel U, Tautermann CS, Wellenzohn B (2011) Ligand-based virtual screening. In: Sotriffer C (ed) Virtual screening: principles, challenges, and practical guidelines. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 61–85

  2. Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2006) New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching. J Chem Inf Model 46:462–470

    Article  CAS  Google Scholar 

  3. Geppert H, Vogt M, Bajorath J (2010) Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 50:205–216

    Article  CAS  Google Scholar 

  4. Stahura FL, Bajorath J (2005) New methodologies for ligand-based virtual screening. Curr Pharm Des 11:1189–1202

    Article  CAS  Google Scholar 

  5. Sun H (2008) Pharmacophore-based virtual screening. Curr Med Chem 15:1018–1024

    Article  CAS  Google Scholar 

  6. Hawkins PC, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50:74–82

    Article  CAS  Google Scholar 

  7. McGaughey GB, Sheridan RP, Bayly CI, Culberson JC, Kreatsoulas C, Lindsley S, Maiorov V, Truchon JF, Cornell WD (2007) Comparison of topological, shape, and docking methods in virtual screening. J Chem Inf Model 47:1504–1519

    Article  CAS  Google Scholar 

  8. Kubinyi H (1997) QSAR and 3D QSAR in drug design Part 1: methodology. Drug Discov Today 2:457–467

    Article  CAS  Google Scholar 

  9. Sastry GM, Inakollu VSS, Sherman W (2013) Boosting virtual screening enrichments with data fusion: coalescing hits from two-dimensional fingerprints, shape, and docking. J Chem Inf Model 53:1531–1542

    Article  CAS  Google Scholar 

  10. Kirchmair J, Ristic S, Eder K, Markt P, Wolber G, Laggner C, Langer T (2007) Fast and efficient in silico 3D screening: toward maximum computational efficiency of pharmacophore-based and shape-based approaches. J Chem Inf Model 47:2182–2196

    Article  CAS  Google Scholar 

  11. Kirchmair J, Distinto S, Markt P, Schuster D, Spitzer GM, Liedl KR, Wolber G (2009) How to optimize shape-based virtual screening: choosing the right query and including chemical information. J Chem Inf Model 49:678–692

    Article  CAS  Google Scholar 

  12. Singh J, Chuaqui CE, Boriack-Sjodin P, Lee WC, Pontz T, Corbley MJ, Cheung HK, Arduini RM, Mead JN, Newman MN (2003) Successful shape-based virtual screening: the discovery of a potent inhibitor of the type I TGFβ receptor kinase (TβRI). Bioorg Med Chem Lett 13:4355–4359

    Article  CAS  Google Scholar 

  13. Mason JS, Morize I, Menard PR, Cheney DL, Hulme C, Labaudiniere RF (1999) New 4-point pharmacophore method for molecular similarity and diversity applications: overview of the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures. J Med Chem 42:3251–3264

    Article  CAS  Google Scholar 

  14. Martin YC, Bures MG, Danaher EA, DeLazzer J, Lico I, Pavlik PA (1993) A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists. J Comput Aided Mol Des 7:83–102

    Article  CAS  Google Scholar 

  15. Ekins S, Bravi G, Binkley S, Gillespie JS, Ring BJ, Wikel JH, Wrighton SA (1999) Three and four dimensional-quantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2D6 inhibitors. Pharmacogenet Genomics 9:477–489

    CAS  Google Scholar 

  16. Foloppe N, Chen IJ (2009) Conformational sampling and energetics of drug-like molecules. Curr Med Chem 16:3381–3413

    Article  CAS  Google Scholar 

  17. Mohamadi F, Richards NGJ, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (1990) MacroModel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 11:440–467

    Article  CAS  Google Scholar 

  18. Chang G, Guida WC, Still WC (1989) An internal coordinate Monte Carlo method for searching conformational space. J Am Chem Soc 111:4379–4386

  19. Ferguson DM, Raber DJ (1989) A new approach to probing conformational space with molecular mechanics: random incremental pulse search. J Am Chem Soc 111:4371–4378

    Article  CAS  Google Scholar 

  20. Crippen G (1978) Note rapid calculation of coordinates from distance matrices. J Comput Phys 26:449–452

    Article  Google Scholar 

  21. Izrailev S, Zhu F, Agrafiotis DK (2006) A distance geometry heuristic for expanding the range of geometries sampled during conformational search. J Comput Chem 27:1962–1969

    Article  CAS  Google Scholar 

  22. Rusinko A III, Sheridan RP, Nilakantan R, Haraki KS, Bauman N, Venkataraghavan R (1989) Using CONCORD to construct a large database of three-dimensional coordinates from connection tables. J Chem Inf Comput Sci 29:251–255

    Article  CAS  Google Scholar 

  23. Gasteiger J, Rudolph C, Sadowski J (1990) Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comput Methodol 3:537–547

    Article  CAS  Google Scholar 

  24. Hawkins PC, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J Chem Inf Model 50:572–584

    Article  CAS  Google Scholar 

  25. Kolossváry I, Guida WC (1996) Low mode search. An efficient, automated computational method for conformational analysis: application to cyclic and acyclic alkanes and cyclic peptides. J Am Chem Soc 118:5011–5019

    Article  Google Scholar 

  26. Labute P (2010) LowModeMD-implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops. J Chem Inf Model 50:792–800

    Article  CAS  Google Scholar 

  27. Watts KS, Dalal P, Murphy RB, Sherman W, Friesner RA, Shelley JC (2010) ConfGen: a conformational search method for efficient generation of bioactive conformers. J Chem Inf Model 50:534–546

    Article  CAS  Google Scholar 

  28. Anghelescu AV, DeLisle RK, Lowrie JF, Klon AE, Xie X, Diller DJ (2008) Technique for generating three-dimensional alignments of multiple ligands from one-dimensional alignments. J Chem Inf Model 48:1041–1054

    Article  CAS  Google Scholar 

  29. Jones G, Gao Y, Sage CR (2009) Elucidating molecular overlays from pairwise alignments using a genetic algorithm. J Chem Inf Model 49:1847–1855

    Article  CAS  Google Scholar 

  30. Korb O, Monecke P, Hessler G, Stutzle T, Exner TE (2010) pharmACOphore: multiple flexible ligand alignment based on ant colony optimization. J Chem Inf Model 50:1669–1681

    Article  CAS  Google Scholar 

  31. Lemmen C, Lengauer T, Klebe G (1998) FLEXS: a method for fast flexible ligand superposition. J Med Chem 41:4502–4520

    Article  CAS  Google Scholar 

  32. Marialke J, Korner R, Tietze S, Apostolakis J (2007) Graph-based molecular alignment (GMA). J Chem Inf Model 47:591–601

    Article  CAS  Google Scholar 

  33. Robinson DD, Lyne PD, Richards WG (1999) Alignment of 3D-structures by the method of 2D-projections. J Chem Inf Comput Sci 39:594–600

    Article  CAS  Google Scholar 

  34. Klabunde T, Giegerich C, Evers A (2012) MARS: computing three-dimensional alignments for multiple ligands using pairwise similarities. J Chem Inf Model 52:2022–2030

    Article  CAS  Google Scholar 

  35. Giangreco I, Cosgrove DA, Packer MJ (2013) An extensive and diverse set of molecular overlays for the validation of pharmacophore programs. J Chem Inf Model 53:852–866

    Article  CAS  Google Scholar 

  36. Sastry M, Dixon S, Sherman W (2011) Rapid shape-based ligand alignment and virtual screening method based on atom/feature-pair similarities and volume overlap scoring. J Chem Inf Model 51:2455–2466

    Article  CAS  Google Scholar 

  37. Salam NK, Nuti R, Sherman W (2009) Novel method for generating structure-based pharmacophores using energetic analysis. J Chem Inf Model 49:2356–2368

    Article  CAS  Google Scholar 

  38. Hopfinger AJ, Wang S, Tokarski JS, Jin B, Albuquerque M, Madhav PJ, Duraiswami C (1997) Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J Am Chem Soc 119:10509–10524

    Article  CAS  Google Scholar 

  39. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801

    Article  CAS  Google Scholar 

  40. Ligprep. 2.5. New York, NY: Schrodinger LLC; 2013

  41. Jorgensen WL, Tirado-Rives J (1988) The OPLS potential function for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666

    Article  CAS  Google Scholar 

  42. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparameterization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  43. Epik. 2.3. New York, NY: Schrödinger LLC; 2013

  44. Schaal W, Karlsson A, Ahlsen G, Lindberg J, Andersson HO, Danielson UH, Classon B, Unge T, Samuelsson B, Hulten J, Hallberg A, Karlen A (2001) Synthesis and comparative molecular field analysis (Comfa) of symmetric and nonsymmetric cyclic sulfamide HIV-1 protease inhibitors. J Med Chem 44:155–169

    Article  CAS  Google Scholar 

  45. Matter H, Defossa E, Heinelt U, Blohm PM, Schneider D, Muller A, Herok S, Schreuder H, Liesum A, Brachvogel V, Lonze P, Walser A, Al-Obeidi F, Wildgoose P (2002) Design and quantitative structure-activity relationship of 3-amidinobenzyl-1H-indole-2-carboxamides as potent, nonchiral, and selective inhibitors of blood coagulation factor Xa. J Med Chem 45:2749–2769

    Article  CAS  Google Scholar 

  46. Hardcastle IR, Arris CE, Bentley J, Boyle FT, Chen Y, Curtin NJ, Endicott JA, Gibson AE, Golding BT, Griffin RJ, Jewsbury P, Menyerol J, Mesguiche V, Newell DR, Noble ME, Pratt DJ, Wang LZ, Whitfield HJ (2004) N2-substituted O6-cyclohexylmethylguanine derivatives: potent inhibitors of cyclin-dependent kinases 1 and 2. J Med Chem 47:3710–3722

    Article  CAS  Google Scholar 

  47. Wan ZK, Lee J, Xu W, Erbe DV, Joseph-McCarthy D, Follows BC, Zhang YL (2006) Monocyclic thiophenes as protein tyrosine phosphatase 1B inhibitors: capturing interactions with Asp48. Bioorg Med Chem Lett 16:4941–4945

    Article  CAS  Google Scholar 

  48. DiMauro EF, Newcomb J, Nunes JJ, Bemis JE, Boucher C, Buchanan JL, Buckner WH, Cee VJ, Chai L, Deak HL, Epstein LF, Faust T, Gallant P, Geuns-Meyer SD, Gore A, Gu Y, Henkle B, Hodous BL, Hsieh F, Huang X, Kim JL, Lee JH, Martin MW, Masse CE, McGowan DC, Metz D, Mohn D, Morgenstern KA, Oliveira-dos-Santos A, Patel VF, Powers D, Rose PE, Schneider S, Tomlinson SA, Tudor YY, Turci SM, Welcher AA, White RD, Zhao H, Zhu L, Zhu X (2006) Discovery of aminoquinazolines as potent, orally bioavailable inhibitors of Lck: synthesis, SAR, and in vivo anti-inflammatory activity. J Med Chem 49:5671–5686

    Article  CAS  Google Scholar 

  49. Liu M, Wang S, Clampit JE, Gum RJ, Haasch DL, Rondinone CM, Trevillyan JM, Abad-Zapatero C, Fry EH, Sham HL, Liu G (2007) Discovery of a new class of 4-anilinopyrimidines as potent c-Jun N-terminal kinase inhibitors: synthesis and SAR studies. Bioorg Med Chem Lett 17:668–672

    Article  CAS  Google Scholar 

  50. Aronov AM, Baker C, Bemis GW, Cao J, Chen G, Ford PJ, Germann UA, Green J, Hale MR, Jacobs M, Janetka JW, Maltais F, Martinez-Botella G, Namchuk MN, Straub J, Tang Q, Xie X (2007) Flipped out: structure-guided design of selective pyrazolylpyrrole ERK inhibitors. J Med Chem 50:1280–1287

    Article  CAS  Google Scholar 

  51. Tong Y, Claiborne A, Stewart KD, Park C, Kovar P, Chen Z, Credo RB, Gu WZ, Gwaltney SL 2nd, Judge RA, Zhang H, Rosenberg SH, Sham HL, Sowin TJ, Lin NH (2007) Discovery of 1,4-dihydroindeno[1,2-c]pyrazoles as a novel class of potent and selective checkpoint kinase 1 inhibitors. Bioorg Med Chem 15:2759–2767

    Article  CAS  Google Scholar 

  52. Eldrup AB, Soleymanzadeh F, Farrow NA, Kukulka A, De Lombaert S (2010) Optimization of piperidyl-ureas as inhibitors of soluble epoxide hydrolase. Bioorg Med Chem Lett 20:571–575

    Article  CAS  Google Scholar 

  53. Katz BA, Elrod K, Verner E, Mackman RL, Luong C, Shrader WD, Sendzik M, Spencer JR, Sprengeler PA, Kolesnikov A, Tai VW, Hui HC, Breitenbucher JG, Allen D, Janc JW (2003) Elaborate manifold of short hydrogen bond arrays mediating binding of active site-directed serine protease inhibitors. J Mol Biol 329:93–120

    Article  CAS  Google Scholar 

  54. Peters JU, Weber S, Kritter S, Weiss P, Wallier A, Boehringer M, Hennig M, Kuhn B, Loeffler BM (2004) Aminomethylpyrimidines as novel DPP-IV inhibitors: a 10(5)-fold activity increase by optimization of aromatic substituents. Bioorg Med Chem Lett 14:1491–1493

    Article  CAS  Google Scholar 

  55. Mertens A, Zilch H, Konig B, Schafer W, Poll T, Kampe W, Seidel H, Leser U, Leinert H (1993) Selective non-nucleoside HIV-1 reverse transcriptase inhibitors. New 2,3-dihydrothiazolo[2,3-a]isoindol-5(9bH)-ones and related compounds with anti-HIV-1 activity. J Med Chem 36:2526–2535

    Article  CAS  Google Scholar 

  56. Confgen. 2.3. New York, NY: Schrödinger LLC; 2013

  57. Chen IJ, Foloppe N (2010) Drug-like bioactive structures and conformational coverage with the LigPrep/ConfGen suite: comparison to programs MOE and Catalyst. J Chem Inf Model 50:822–839

    Article  CAS  Google Scholar 

  58. Phase. 3.5. New York, NY: Schrödinger LLC; 2013

  59. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20:647–671

    Article  CAS  Google Scholar 

  60. Dixon SL, Smondyrev AM, Rao SN (2006) PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des 67:370–372

    Article  CAS  Google Scholar 

  61. MacroModel. 9.9. New York, NY: Schrödinger LLC; 2013

  62. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234

    Article  Google Scholar 

  63. Impact. 5.8. New York, NY: Schrödinger LLC; 2013

  64. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6:1509–1519

    Article  CAS  Google Scholar 

  65. Glide. 5.8. New York, NY: Schrödinger LLC; 2013

  66. Truchon J-F, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem. J Chem Inf Model 47:488–508

    Article  CAS  Google Scholar 

  67. Cramer RD III, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  68. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  69. Ghose AK, Viswanadhan VN, Wendoloski JJ (1998) Prediction of hydrophobic (Lipophilic) properties of small organic molecules using fragmental methods: an analysis of ALOGP and CLOGP methods. J Phys Chem A 102:3762–3772

    Article  CAS  Google Scholar 

  70. Golbraikh A, Tropsha A (2001) Beware of q2! J Mol Graph Model 20:269–276

    Article  Google Scholar 

  71. Abel R, Salam NK, Shelley J, Farid R, Friesner RA, Sherman W (2011) Contribution of explicit solvent effects to the binding affinity of small-molecule inhibitors in blood coagulation factor serine proteases. Chem Med Chem 6:1049–1066

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Duan.

Additional information

Daniel Cappel and Jianxin Duan have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 567 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cappel, D., Dixon, S.L., Sherman, W. et al. Exploring conformational search protocols for ligand-based virtual screening and 3-D QSAR modeling. J Comput Aided Mol Des 29, 165–182 (2015). https://doi.org/10.1007/s10822-014-9813-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9813-4

Keywords

Navigation