Skip to main content
Log in

Predicting hydration free energies with chemical accuracy: the SAMPL4 challenge

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

An implicit solvent model described by a non-simple dielectric medium is used for the prediction of hydration free energies on the dataset of 47 molecules in the SAMPL4 challenge. The solute is represented by a minimal parameter set model based on a new all atom force-field, named the liquid simulation force-field. The importance of a first solvation shell correction to the hydration free energy prediction is discussed and two different approaches are introduced to address it: either with an empirical correction to a few functional groups (alcohol, ether, ester, amines and aromatic nitrogen), or an ab initio correction based on the formation of a solute/explicit water complex. Both approaches give equally good predictions with an average unsigned error <1 kcal/mol. Chemical accuracy is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mikulskis P, Genheden S, Rydberg P, Sandberg L, Olsen L, Ryde U (2012) J Comput Aided Mol Des 26:527–541

    Article  CAS  Google Scholar 

  2. Sandberg L, Edholm O (2002) J Chem Phys 116:2935–2944

    Article  Google Scholar 

  3. Sandberg L, Casemyr R, Edholm O (2002) J Phys Chem B 106:7889–7897

    Article  CAS  Google Scholar 

  4. Guthrie JP (2014) SAMPL4, A blind challenge for computational solvation free energies: the compounds considered. J Comput Aided Mol Des (in press)

  5. Mobley DL, Wymer K, Lim NM (2014) Blind prediction of solvation free energies from the SAMPL4 challenge. J Comput Aided Mol Des (in press)

  6. Desnoyers JE, Verrall RE, Conway BE (1965) J Chem Phys 43:243–250

    Article  CAS  Google Scholar 

  7. Chandler D (2005) Nature 437:640–647

    Article  CAS  Google Scholar 

  8. Reiss H, Frisch HL, Lebowitz JL (1959) J Chem Phys 31:369–380

    Article  CAS  Google Scholar 

  9. Reiss H, Frisch HL, Helfand E, Lebowitz JL (1960) J Chem Phys 32:119–124

    Article  CAS  Google Scholar 

  10. Rick SW (2004) J Chem Phys 120:6085–6093

    Article  CAS  Google Scholar 

  11. Vrabec J, Stoll J, Hasse H (2001) J Phys Chem B 105:12126–12133

    Article  CAS  Google Scholar 

  12. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  13. Rowland RS, Taylor R (1996) J Phys Chem 100:7384–7391

    Article  CAS  Google Scholar 

  14. (2013) LigPrep, version 2.6, Schrödinger, LLC, New York

  15. (2013) MacroModel, version 10.0, Schrödinger, LLC, New York

  16. (2013) Jaguar, version 8.0, Schrödinger, LLC, New York

  17. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  18. Plyasunova NV, Plyasunov AV, Shock EL (2004) Intern J Thermophys 25:351–360

    Article  CAS  Google Scholar 

  19. Abraham MH, Andonian-Haftvan J, Whiting GS, Leo A, Taft RS (1994) J Chem Soc Perkin Trans 2:1777–1791

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Ulf Ryde for fruitful discussions and valuable comments. I am also grateful to Andreas Klamt for providing me with his lowest energy conformer of mannitol (SAMPL4_001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Sandberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandberg, L. Predicting hydration free energies with chemical accuracy: the SAMPL4 challenge. J Comput Aided Mol Des 28, 211–219 (2014). https://doi.org/10.1007/s10822-014-9725-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9725-3

Keywords

Navigation