Skip to main content

Advertisement

Log in

Interrogating HIV integrase for compounds that bind- a SAMPL challenge

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Tremendous gains and novel methods are often developed when people are challenged to do something new or difficult. This process is enhanced when people compete against each other-this can be seen in sport as well as in science and technology (e.g. the space race). The SAMPL challenges, like the CASP challenges, aim to challenge modellers and software developers to develop new ways of looking at molecular interactions so the community as a whole can progress in the accurate prediction of these interactions. In order for this challenge to occur, data must be supplied so the prospective test can be done. We have supplied unpublished data related to a drug discovery program run several years ago on HIV integrase for the SAMPL4 challenge. This paper describes the methods used to obtain these data and the chemistry involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arribas JR, Eron J (2013) Advances in antiretroviral therapy. Curr Opin HIV AIDS 8(4):341–349

    CAS  Google Scholar 

  2. Metifiot M, Marchand C, Pommier Y (2013) HIV integrase inhibitors: 20-year landmark and challenges. Adv Pharmacol 67:75–105

    Article  CAS  Google Scholar 

  3. Messiaen P et al (2013) Clinical use of HIV integrase inhibitors: a systematic review and meta-analysis. PLoS ONE 8(1):e52562

    Article  CAS  Google Scholar 

  4. Flexner C, Saag M (2013) The antiretroviral drug pipeline: prospects and implications for future treatment research. Curr Opin HIV AIDS 8(6):572–578

    Article  CAS  Google Scholar 

  5. Geretti AM, Armenia D, Ceccherini-Silberstein F (2012) Emerging patterns and implications of HIV-1 integrase inhibitor resistance. Curr Opin Infect Dis 25(6):677–686

    Article  CAS  Google Scholar 

  6. Quashie PK, Mesplede T, Wainberg MA (2013) Evolution of HIV integrase resistance mutations. Curr Opin Infect Dis 26(1):43–49

    CAS  Google Scholar 

  7. Jenkins TM et al (1995) Catalytic domain of human immunodeficiency virus type 1 integrase: identification of a soluble mutant by systematic replacement of hydrophobic residues. Proc Natl Acad Sci USA 92(13):6057–6061

    Article  CAS  Google Scholar 

  8. Goldgur Y et al (1998) Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Proc Natl Acad Sci USA 95(16):9150–9154

    Article  CAS  Google Scholar 

  9. Chen JC et al (2000) Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Proc Natl Acad Sci USA 97(15):8233–8238

    Article  CAS  Google Scholar 

  10. Cherepanov P et al (2005) Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75. Nat Struct Mol Biol 12(6):526–532

    Article  CAS  Google Scholar 

  11. Cherepanov P et al (2005) Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci USA 102(48):17308–17313

    Article  CAS  Google Scholar 

  12. Christ F et al (2010) Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 6(6):442–448

    Article  CAS  Google Scholar 

  13. Rhodes DI et al (2011) Structural basis for a new mechanism of inhibition of HIV-1 integrase identified by fragment screening and structure-based design. Antivir Chem Chemother 21(4):155–168

    Article  CAS  Google Scholar 

  14. Bukrinsky MI et al (1992) Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci USA 89(14):6580–6584

    Article  CAS  Google Scholar 

  15. Tsiang M et al (2009) Affinities between the binding partners of the HIV-1 integrase dimer-lens epithelium-derived growth factor (IN dimer-LEDGF) complex. J Biol Chem 284(48):33580–33599

    Article  CAS  Google Scholar 

  16. McNeely M et al (2011) In vitro DNA tethering of HIV-1 integrase by the transcriptional coactivator LEDGF/p75. J Mol Biol 410(5):811–830

    Article  CAS  Google Scholar 

  17. Gijsbers R et al (2011) Role of the PWWP domain of lens epithelium-derived growth factor (LEDGF)/p75 cofactor in lentiviral integration targeting. J Biol Chem 286(48):41812–41825

    Article  CAS  Google Scholar 

  18. Rhodes DI et al (2011) Crystal structures of novel allosteric peptide inhibitors of HIV integrase identify new interactions at the LEDGF binding site. ChemBioChem 12(15):2311–2315

    Article  CAS  Google Scholar 

  19. Maertens G et al (2003) LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem 278(35):33528–33539

    Article  CAS  Google Scholar 

  20. Hare S et al (2009) A novel co-crystal structure affords the design of gain-of-function lentiviral integrase mutants in the presence of modified PSIP1/LEDGF/p75. PLoS Pathog 5(1):e1000259

    Article  Google Scholar 

  21. Balakrishnan M et al (2013) Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells. PLoS ONE 8(9):e74163

    Article  CAS  Google Scholar 

  22. Madlala P et al (2011) Association of polymorphisms in the LEDGF/p75 gene (PSIP1) with susceptibility to HIV-1 infection and disease progression. AIDS 25(14):1711–1719

    Article  CAS  Google Scholar 

  23. Wielens J et al (2013) Parallel screening of low molecular weight fragment libraries: do differences in methodology affect hit identification? J Biomol Screen 18(2):147–159

    Article  Google Scholar 

  24. Peat TS et al (2012) Small molecule inhibitors of the LEDGF site of human immunodeficiency virus integrase identified by fragment screening and structure based design. PLoS ONE 7(7):e40147

    Article  CAS  Google Scholar 

  25. Giannetti AM, Koch BD, Browner MF (2008) Surface plasmon resonance based assay for the detection and characterization of promiscuous inhibitors. J Med Chem 51(3):574–580

    Article  CAS  Google Scholar 

  26. Leslie AW, Powell H (2007) Processing diffraction data with mosflm. In: Read R, Sussman J (eds) Evolving methods for macromolecular crystallography. Springer, Netherlands, pp 41–51

    Chapter  Google Scholar 

  27. Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62(Pt 1):72–82

    Article  Google Scholar 

  28. McCoy AJ et al (2007) Phaser crystallographic software. J Appl Crystallogr 40(Pt 4):658–674

    Article  CAS  Google Scholar 

  29. Emsley P et al (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66(Pt 4):486–501

    Article  CAS  Google Scholar 

  30. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53(Pt 3):240–255

    Article  CAS  Google Scholar 

  31. De Luca L et al (2011) 4-[1-(4-Fluorobenzyl)-4-hydroxy-1H-indol-3-yl]-2-hydroxy-4-oxobut-2-enoic acid as a prototype to develop dual inhibitors of HIV-1 integration process. Antiviral Res 92(1):102–107

    Article  Google Scholar 

  32. Fan X et al (2011) Design of HIV-1 integrase inhibitors targeting the catalytic domain as well as its interaction with LEDGF/p75: a scaffold hopping approach using salicylate and catechol groups. Bioorg Med Chem 19(16):4935–4952

    Article  CAS  Google Scholar 

  33. De Luca L et al (2011) Inhibitors of the interactions between HIV-1 IN and the cofactor LEDGF/p75. ChemMedChem 6(7):1184–1191

    Article  Google Scholar 

  34. De Luca L et al (2009) Pharmacophore-based discovery of small-molecule inhibitors of protein-protein interactions between HIV-1 integrase and cellular cofactor LEDGF/p75. ChemMedChem 4(8):1311–1316

    Article  Google Scholar 

  35. Serrao E et al (2013) Discovery of a novel 5-carbonyl-1H-imidazole-4-carboxamide class of inhibitors of the HIV-1 integrase-LEDGF/p75 interaction. Bioorg Med Chem 21(19):5963–5972

    Article  CAS  Google Scholar 

Download references

Acknowledgments

DLM acknowledges the financial support of the National Institutes of Health (1R15GM096257-01A1), and computing support from the UCI GreenPlanet cluster, supported in part by NSF Grant CHE-0840513. The work was supported by a commercial ready grant COMO4229 from the Commonwealth of Australia, Department of Innovation, Industry, Science and Research to Avexa Pty Ltd. We thank the Australian Synchrotron and the beamline scientists at MX1 and MX2 for their help in data collection; and the Collaborative Crystallisation Centre for producing the protein crystals used in this study. Compounds in this study were prepared for Avexa Pty Ltd by Dr G. Le (now at Alchemia Pty Ltd), Dr J.A. Smith (now at F.B. Rice Pty Ltd), SYNthesis med chem Pty Ltd, Dr J. Spencer (now at the University of Sussex, UK) and Dr H. Patel at the time at the University of Greenwich, UK. We thank OpenEye Scientific Software for a license to their software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Peat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10822_2014_9721_MOESM1_ESM.xlsx

Supporting Information: In the Supporting Information, we provide tables with compound IDs and isomeric SMILES strings for all of the compounds examined here, as well as for a more extensive set of nonbinders which were tested. The PDB codes for the 55 new structures used in the challenge are also provided in a table. (XLSX 12 kb)

Supplementary Material 2 (XLSX 141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peat, T.S., Dolezal, O., Newman, J. et al. Interrogating HIV integrase for compounds that bind- a SAMPL challenge. J Comput Aided Mol Des 28, 347–362 (2014). https://doi.org/10.1007/s10822-014-9721-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9721-7

Keywords

Navigation