Advertisement

Journal of Computer-Aided Molecular Design

, Volume 28, Issue 3, pp 259–264 | Cite as

Testing the semi-explicit assembly model of aqueous solvation in the SAMPL4 challenge

  • Libo Li
  • Ken A. Dill
  • Christopher J. Fennell
Article

Abstract

Here, we test a method, called semi-explicit assembly (SEA), that computes the solvation free energies of molecules in water in the SAMPL4 blind test challenge. SEA was developed with the intention of being as accurate as explicit-solvent models, but much faster to compute. It is accurate because it uses pre-simulations of simple spheres in explicit solvent to obtain structural and thermodynamic quantities, and it is fast because it parses solute free energies into regionally additive quantities. SAMPL4 provided us the opportunity to make new tests of SEA. Our tests here lead us to the following conclusions: (1) The newest version, called Field-SEA, which gives improved predictions for highly charged ions, is shown here to perform as well as the earlier versions (dipolar and quadrupolar SEA) on this broad blind SAMPL4 test set. (2) We find that both the past and present SEA models give solvation free energies that are as accurate as TIP3P. (3) Using a new approach for force field parameter optimization, we developed improved hydroxyl parameters that ensure consistency with neat-solvent dielectric constants, and found that they led to improved solvation free energies for hydroxyl-containing compounds in SAMPL4. We also learned that these hydroxyl parameters are not just fixing solvent exposed oxygens in a general sense, and therefore do not improve predictions for carbonyl or carboxylic-acid groups. Other such functional groups will need their own independent optimizations for potential improvements. Overall, these tests in SAMPL4 indicate that SEA is an accurate, general and fast new approach to computing solvation free energies.

Keywords

SAMPL Semi-explicit assembly Hydration Free energy calculations Implicit solvation 

Notes

Acknowledgments

The authors thank Karisa L. Wymer (UC Irvine) and David L. Mobley (UC Irvine) for helpful discussions. The authors appreciate the support from National Institutes of Health Grant GM063592.

Supplementary material

10822_2014_9712_MOESM1_ESM.pdf (87 kb)
Supplementary material 1 (PDF 88 kb)

Reference

  1. 1.
    Fennell CJ, Kehoe C, Dill KA (2010) Oil/Water transfer is partly driven by molecular shape, not just size. J Am Chem Soc 132:234–240CrossRefGoogle Scholar
  2. 2.
    Fennell CJ, Kehoe CW, Dill KA (2011) Modeling aqueous solvation with semi-explicit assembly. Proc Natl Acad Sci USA 108:3234–3239CrossRefGoogle Scholar
  3. 3.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys79:926–935CrossRefGoogle Scholar
  4. 4.
    Fennell CJ, Dill KA (2011) Physical modeling of aqueous solvation. J Stat Phys 145: 209–226CrossRefGoogle Scholar
  5. 5.
    Kehoe CW, Fennell CJ, Dill KA (2012) Testing the semi-explicit assembly solvation model in the SAMPL3 community blind test. J Comput Aided Mol Des 26:563–568CrossRefGoogle Scholar
  6. 6.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236CrossRefGoogle Scholar
  7. 7.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  8. 8.
    Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J Comput Chem 21:132–146CrossRefGoogle Scholar
  9. 9.
    Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641CrossRefGoogle Scholar
  10. 10.
    Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Bayly CI, Cooper MD, Pande VS (2008) Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. J Med Chem 51:769–779CrossRefGoogle Scholar
  11. 11.
    Guthrie JP (2009) A blind challenge for computational solvation free energies: introduction and overview. J Phys Chem B 113:4501–4507CrossRefGoogle Scholar
  12. 12.
    Geballe MT, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ (2010) The SAMPL2 blind prediction challenge: introduction and overview. J Comput Aided Mol Des 24:259–279CrossRefGoogle Scholar
  13. 13.
    Skillman AG (2012) SAMPL3: blinded prediction of host–guest binding affinities, hydration free energies, and trypsin inhibitors. J Comput Aided Mol Des 26:473–474CrossRefGoogle Scholar
  14. 14.
    Mobley DL, Wymer KL, Lim NM (2014) Blind prediction of solvation free energies from the SAMPL4 challenge. ibidGoogle Scholar
  15. 15.
    Li L, Fennell CJ, Dill KA (2014) Field-SEA: a model for computing the solvation free energies of nonpolar, polar, and charged solutes in water. J Phys Chem B. doi: 10.1021/jp4115139
  16. 16.
    Fennell CJ, Li L, Dill KA (2012) Simple liquid models with corrected dielectric constants. J Phys Chem B 116:6936–6944CrossRefGoogle Scholar
  17. 17.
    Fennell CJ, Wymer KL, Mobley DL (2014) Dielectric corrected alcohol in condensed-phase fixed-charge simulations and its role in small molecule hydration. J Phys Chem B (in press)Google Scholar
  18. 18.
    Guthrie JP (2014) SAMPL4, a blind challenge for computational solvation free energies: the compounds considered. ibidGoogle Scholar
  19. 19.
    Swope WC, Horn HW, Rice JE (2010) Accounting for polarization cost when using fixed charge force fields. II. Method and application for computing effect of polarization cost on free energy of hydration. J Phys Chem B 114:8631–8645CrossRefGoogle Scholar
  20. 20.
    Swope WC, Horn HW, Rice JE (2010) Accounting for polarization cost when using fixed charge force fields. I. Method for computing energy. J Phys Chem B 114:8621–8630CrossRefGoogle Scholar
  21. 21.
    Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260CrossRefGoogle Scholar
  22. 22.
    Sousa da Silva AW, Vranken WF (2012) ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res Notes 5:367CrossRefGoogle Scholar
  23. 23.
    Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: A message-passing parallel molecular dynamics implementation. Comp Phys Comm 91:43–56CrossRefGoogle Scholar
  24. 24.
    Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Libo Li
    • 1
  • Ken A. Dill
    • 1
  • Christopher J. Fennell
    • 2
  1. 1.Departments of Chemistry and Physics, Laufer Center for Physical and Quantitative BiologyStony Brook UniversityStony BrookUSA
  2. 2.Department of ChemistryOklahoma State UniversityStillwaterUSA

Personalised recommendations