Abstract
As part of the SAMPL4 blind challenge, filtered AutoDock Vina ligand docking predictions and large scale binding energy distribution analysis method binding free energy calculations have been applied to the virtual screening of a focused library of candidate binders to the LEDGF site of the HIV integrase protein. The computational protocol leveraged docking and high level atomistic models to improve enrichment. The enrichment factor of our blind predictions ranked best among all of the computational submissions, and second best overall. This work represents to our knowledge the first example of the application of an all-atom physics-based binding free energy model to large scale virtual screening. A total of 285 parallel Hamiltonian replica exchange molecular dynamics absolute protein-ligand binding free energy simulations were conducted starting from docked poses. The setup of the simulations was fully automated, calculations were distributed on multiple computing resources and were completed in a 6-weeks period. The accuracy of the docked poses and the inclusion of intramolecular strain and entropic losses in the binding free energy estimates were the major factors behind the success of the method. Lack of sufficient time and computing resources to investigate additional protonation states of the ligands was a major cause of mispredictions. The experiment demonstrated the applicability of binding free energy modeling to improve hit rates in challenging virtual screening of focused ligand libraries during lead optimization.
Similar content being viewed by others
References
Goodsell DS, Morris GM, Olson AJ (1996) J Mol Recognit 9:1–5
Shoichet BK, McGovern SL, Wei B, Irwin JJ (2002) Curr Opin Chem Biol 6:439–446
Zhou Z, Felts AK, Friesner RA, Levy RM (2007) J Chem Inf Model 47:1599–1608
Trott O, Olson AJ (2010) J Comput Chem 31:455–461
Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ (2010) Expert Opin Drug Discov 5:597–607
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30:2785–2791
Repasky MP, Murphy RB, Banks JL, Greenwood JR, Tubert-Brohman I, Bhat S, Friesner RA (2012) J Comput Aided Mol Des 26:787–799
Gilson MK, Given JA, Bush BL, McCammon JA (1997) Biophys J 72:1047–1069
Boresch S, Tettinger F, Leitgeb M, Karplus M (2003) J Phys Chem B 107:9535–9551
Young T, Abel R, Kim B, Berne BJ, Friesner RA (2007) Proc Natl Acad Sci U S A 104:808–813
Jorgensen WL (2004) Science 303:1813–1818
Zhou H-X, Gilson MK (2009) Chem Rev 109:4092–4107
Mobley DL, Dill KA (2009) Structure 17:489–498
Gallicchio E, Lapelosa M, Levy RM (2010) J Chem Theory Comput 6:2961–2977
Gallicchio E, Levy RM (2011) Adv Prot Chem Struct Biol 85:27–80
Gallicchio E, Levy RM (2011) Curr Opin Struct Biol 21:161–166
Wang L, Berne BJ, Friesner RA (2012) Proc Natl Acad Sci U S A 109:1937–1942
Mobley DL, Klimovich PV (2012) J Chem Phys 137:230901
Shirts MR, Mobley DL, Brown SP (2010) Free energy calculations in structure-based drug design. Cambridge University Press, Cambridge, MA
Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K, Pande VS (2011) Curr Opin Struct Biol 21:150–160
Lapelosa M, Gallicchio E, Levy RM (2012) J Chem Theory Comput 8:47–60
Mobley DL (2012) J Comput Aided Mol Des 26:93–95
Peat TS, Dolezal O, Newman J, Mobley D, Deadman JJ (2014) Interrogating HIV integrase for compounds that bind: a sample challenge. J Comput Aided Mol Des. doi:10.1007/s10822-014-9721-7
Mobley DL, Liu S, Lim NM, Wymer KL, Perryman AL, Forli S, Deng N, Su J, Branson K, Olson AJ (2014) Blind prediction of HIV integrase binding from the SAMPL4 challenge. J Comput Aided Mol Des. doi:10.1007/s10822-014-9723-5
Su Y, Gallicchio E, Das K, Arnold E, Levy RM (2007) J Chem Theory Comput 3:256–277
Lapelosa M, Gallicchio E, Arnold GF, Arnold E, Levy RM (2009) J Mol Biol 385:675–691
Frenkel YV, Gallicchio E, Das K, Levy RM, Arnold E (2009) J Med Chem 52:5896–5905
Felts AK, Labarge K, Bauman JD, Patel DV, Himmel DM, Arnold E, Parniak MA, Levy RM (2011) J Chem Inf Model 51:1986–1998
Gallicchio E (2012) Mol Biosci 2:7–22
Deng N, Zheng W, Gallicchio E, Levy RM (2011) J. Am. Chem. Soc 133:9387–9394
Engelman A, Kessl JJ, Kvaratskhelia M (2013) Curr Opin Chem Biol 17:339–345
Jurado KA, Wang H, Slaughter A, Feng L, Kessl JJ, Koh Y, Wang W, Ballandras-Colas A, Patel PA, Fuchs JR et al (2013) Proc Natl Acad Sci 110:8690–8695
Mobley DL, Liu S, Lim NM, Wymer KL, Perryman AL, Forli S, Deng N, Su J, Branson K, Olson AS (2013) Blind prediction of HIV integrase binding from the SAMPL4 challenge. J Comput Aided Mol Des. doi:10.1007/s10822-014-9723-5
Gallicchio E, Levy RM (2012) J Comput Aided Mol Des 25:505–516
Tan Z, Gallicchio E, Lapelosa M, Levy RM (2012) J Chem Phys 136:144102
Wickstrom L, He P, Gallicchio E, Levy RM (2013) J Chem Theory Comput 9:3136–3150
Perryman AL, Santiago DN, Forli S, Santos-Martins D, Olson AJ (2014) Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein-ligand binding challenge. J Comput Aided Mol Des. doi:10.1007/s10822-014-9709-3
Chia-en C, Chen W, Gilson MK (2007) Proc Natl Acad Sci USA 104:1534–1539
Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossváry I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) In: Proceedings of the ACM/IEEE conference on supercomputing (SC06). IEEE, Tampa, FL
Perryman AL, Forli S, Morris GM, Burt C, Cheng Y, Palmer MJ, Whitby K, McCammon JA, Phillips C, Olson AJ (2010) J Mol Biol 397:600–615
Greenwood JR, Calkins D, Sullivan AP, Shelley JC (2010) J Comput Aided Mol Des 24:591–604
Gallicchio E, Paris K, Levy RM (2009) J Chem Theory Comput 5:2544–2564
Shirts MR, Chodera JD (2008) J Chem Phys 129:124105
Okumura H, Gallicchio E, Levy RM (2010) J Comput Chem 31:1357–1367
Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225–11236
Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105:6474–6487
Banks JL, Beard JS, Cao Y, Cho AE, Damm W, Farid R, Felts AK, Halgren TA, Mainz DT, Maple JR, Murphy R, Philipp DM, Repasky MP, Zhang LY, Berne BJ, Friesner RA, Gallicchio E, Levy RM (2005) J Comput Chem 26:1752–1780
Peat TS, Rhodes DI, Vandegraaff N, Le G, Smith JA, Clark LJ, Jones ED, Coates JAV, Thienthong N, Janet N et al (2012) PloS one 7:e40147
Voet ARD, Kumar A, Berenger F, Zhang KYJ (2014) Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4. J Comput Aided Mol Des. doi:10.1007/s10822-013-9702-2
Boresch S, Tettinger F, Leitgeb M, Karplus M 107:9535–9551
Deng N, Zhang P, Cieplak P, Lai L (2011) J Phys Chem B 115:11902–11910
Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Proteins Struct Funct Bioinforma 78:1950–1958
Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, Spoel D et al (2013) Bioinformatics 29:845–854
Bas DC, Rogers DM, Jensen JH (2008) Proteins Struct Funct Bioinforma 73:765–783
Muddana HS, Daniel VC, Bielawski CW, Urbach AR, Isaacs L, Geballe MT, Gilson MK (2012) J Comput Aided Mol Des 6:475–487
Gallicchio E, Levy RM (2004) J Comput Chem 25:479–499
Deng Y, Roux B (2009) J Phys Chem B 113:2234–2246
Gallicchio E, Andrec M, Felts AK, Levy RM (2005) J Phys Chem B 109:6722–6731
Brown SP, Muchmore SW (2006) J Chem Inf Model 46:999–1005
Acknowledgments
This work has been supported in part by Research Grants from the National Institute of Health (GM30580 and P50 GM103368). The calculations reported in this work have been performed at the BioMaPS High Performance Computing Center at Rutgers University funded in part by the NIH shared instrumentation Grants Nos. 1 S10 RR022375 and 1 S10 RR027444, on XSEDE resources under National Science Foundation allocation Grant No. TG-MCB100145, and on the Garibaldi cluster at the Scripps Research Institute. We thank David Mobley and the SAMPL4 organizers.
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Gallicchio, E., Deng, N., He, P. et al. Virtual screening of integrase inhibitors by large scale binding free energy calculations: the SAMPL4 challenge. J Comput Aided Mol Des 28, 475–490 (2014). https://doi.org/10.1007/s10822-014-9711-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-014-9711-9