Skip to main content
Log in

Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein–ligand binding challenge

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

To rigorously assess the tools and protocols that can be used to understand and predict macromolecular recognition, and to gain more structural insight into three newly discovered allosteric binding sites on a critical drug target involved in the treatment of HIV infections, the Olson and Levy labs collaborated on the SAMPL4 challenge. This computational blind challenge involved predicting protein–ligand binding against the three allosteric sites of HIV integrase (IN), a viral enzyme for which two drugs (that target the active site) have been approved by the FDA. Positive control cross-docking experiments were utilized to select 13 receptor models out of an initial ensemble of 41 different crystal structures of HIV IN. These 13 models of the targets were selected using our new “Rank Difference Ratio” metric. The first stage of SAMPL4 involved using virtual screens to identify 62 active, allosteric IN inhibitors out of a set of 321 compounds. The second stage involved predicting the binding site(s) and crystallographic binding mode(s) for 57 of these inhibitors. Our team submitted four entries for the first stage that utilized: (1) AutoDock Vina (AD Vina) plus visual inspection; (2) a new common pharmacophore engine; (3) BEDAM replica exchange free energy simulations, and a Consensus approach that combined the predictions of all three strategies. Even with the SAMPL4’s very challenging compound library that displayed a significantly lower amount of structural diversity than most libraries that are conventionally employed in prospective virtual screens, these approaches produced hit rates of 24, 25, 34, and 27 %, respectively, on a set with 19 % declared binders. Our only entry for the second stage challenge was based on the results of AD Vina plus visual inspection, and it ranked third place overall according to several different metrics provided by the SAMPL4 organizers. The successful results displayed by these approaches highlight the utility of the computational structure-based drug discovery tools and strategies that are being developed to advance the goals of the newly created, multi-institution, NIH-funded center called the “HIV Interaction and Viral Evolution Center”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Mobley DL, Liu S, Lim NM, Wymer KL, Perryman AL, Forli S, Deng N, Su J, Branson K, Olson AJ (2014) J Comput Aided Mol Des. doi:10.1007/s10822-014-9723-5

  2. Tiefenbrunn T, Forli S, Happer M, Gonzalez A, Tsai Y, Soltis M, Elder JH, Olson AJ, Stout CD (2013) Chem Biol Drug Des 83(2):141

    Google Scholar 

  3. Tiefenbrunn T, Forli S, Baksh MM, Chang MW, Happer M, Lin YC, Perryman AL, Rhee JK, Torbett BE, Olson AJ, Elder JH, Finn MG, Stout CD (2013) ACS Chem Biol 8(6):1223

    Google Scholar 

  4. Lin YC, Perryman AL, Olson AJ, Torbett BE, Elder JH, Stout CD (2011) Acta Crystallogr D Biol Crystallogr 67(Pt 6):540

    Article  CAS  Google Scholar 

  5. Perryman AL, Zhang Q, Soutter HH, Rosenfeld R, McRee DE, Olson AJ, Elder JE, Stout CD (2010) Chem Biol Drug Des 75(3):257

    Article  CAS  Google Scholar 

  6. Vajragupta O, Boonchoong P, Morris GM, Olson AJ (2005) Bioorg Med Chem Lett 15(14):3364

    Article  CAS  Google Scholar 

  7. Perryman AL, Forli S, Morris GM, Burt C, Cheng Y, Palmer MJ, Whitby K, McCammon JA, Phillips C, Olson AJ (2010) J Mol Biol 397(2):600

    Article  CAS  Google Scholar 

  8. Gallicchio E, Deng N, He P, Perryman AL, Santiago DN, Forli S, Olson AJ, Levy R (2014) J Comput Aided Mol Des 28(1)

  9. Greenwald J, Le V, Butler SL, Bushman FD, Choe S (1999) Biochemistry 38(28):8892

    Article  CAS  Google Scholar 

  10. Perryman AL, Forli S, Morris GM, Burt C, Cheng Y, Palmer MJ, Whitby K, McCammon JA, Phillips C, Olson AJ (2010) J Mol Biol 397(2):600

    Article  CAS  Google Scholar 

  11. Dewdney TG, Wang Y, Kovari IA, Reiter SJ, Kovari LC (2013) J Struct Biol 184(2):245

    Google Scholar 

  12. Kessl JJ, Jena N, Koh Y, Taskent-Sezgin H, Slaughter A, Feng L, de Silva S, Wu L, Le Grice SFJ, Engelman A, Fuchs JR, Kvaratskhelia M (2012) J Biol Chem 287(20):16801

    Article  CAS  Google Scholar 

  13. Tsiang M, Jones GS, Niedziela-Majka A, Kan E, Lansdon EB, Huang W, Hung M, Samuel D, Novikov N, Xu Y, Mitchell M, Guo H, Babaoglu K, Liu X, Geleziunas R, Sakowicz R (2012) J Biol Chem 287(25):21189

    Article  CAS  Google Scholar 

  14. Christ F, Shaw S, Demeulemeester J, Desimmie BA, Marchand A, Butler S, Smets W, Chaltin P, Westby M, Debyser Z, Pickford C (2012) Antimicrob Agents Chemother 56(8):4365

    Article  CAS  Google Scholar 

  15. Jurado KA, Wang H, Slaughter A, Feng L, Kessl JJ, Koh Y, Wang W, Ballandras-Colas A, Patel PA, Fuchs JR, Kvaratskhelia M, Engelman A (2013) Proc Natl Acad Sci 110(21):8690

    Article  CAS  Google Scholar 

  16. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28(1):235

    Article  CAS  Google Scholar 

  17. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) Acta Crystallogr D 58(6 Part 1):899

    Article  Google Scholar 

  18. Chen VB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) Acta Crystallogr D 66(1):12

    Article  CAS  Google Scholar 

  19. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, Snoeyink J, Richardson JS, Richardson DC (2007) Nucleic Acids Res 35(suppl 2):W375

    Article  Google Scholar 

  20. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) J Cheminform 4(1):17

    Article  CAS  Google Scholar 

  21. Gasteiger J, Marsili M (1980) Tetrahedron 36(22):3219

    Article  CAS  Google Scholar 

  22. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30(16):2785

    Article  CAS  Google Scholar 

  23. Forli S. Raccoon (2010) Molecular Graphics Laboratory, The Scripps Research Institute, La Jolla. http://autodock.scripps.edu/resources/raccoon. Accessed 2013

  24. Trott O, Olson AJ (2010) J Comput Chem 31(2):455

    CAS  Google Scholar 

  25. Peat TS, Rhodes DI, Vandegraaff N, Le G, Smith JA, Clark LJ, Jones ED, Coates JAV, Thienthong N, Newman J, Dolezal O, Mulder R, Ryan JH, Savage GP, Francis CL, Deadman JJ (2012) PLoS One 7(7):e40147

    Article  CAS  Google Scholar 

  26. Rhodes DI, Peat TS, Vandegraaff N, Jeevarajah D, Le G, Jones ED, Smith JA, Coates JA, Winfield LJ, Thienthong N, Newman J, Lucent D, Ryan JH, Savage GP, Francis CL, Deadman JJ (2011) Antivir Chem Chemother 21(4):155

    Article  CAS  Google Scholar 

  27. Wielens J, Headey SJ, Deadman JJ, Rhodes DI, Le GT, Parker MW, Chalmers DK, Scanlon MJ (2011) Chem Med Chem 6(2):258

    Article  CAS  Google Scholar 

  28. Wielens J, Headey SJ, Rhodes DI, Mulder RJ, Dolezal O, Deadman JJ, Newman J, Chalmers DK, Parker MW, Peat TS, Scanlon MJ (2013) J Biomol Screen 18(2):147

    Article  Google Scholar 

  29. Greenwood JR, Calkins D, Sullivan AP, Shelley JC (2010) J Comput Aided Mol Des 24(6–7):591

    Article  CAS  Google Scholar 

  30. LigPrep. 2.6. (2013) Schrödinger LLC, New York

  31. Gallicchio E, Lapelosa M, Levy RM (2010) J Chem Theory Comput 6(9):2961

    Article  CAS  Google Scholar 

  32. Güner OF (1999) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla, CA

  33. Langer T, Hoffman RD (2006) Pharmacophores and pharmacophore searches. Wiley-VCH, Weinheim, Germany

  34. Zhu T, Cao S, Su P-C, Patel R, Shah D, Chokshi HB, Szukala R, Johnson ME, Hevener KE (2013) J Med Chem 56(17):6560

    CAS  Google Scholar 

  35. Sanner MF (1999) J Mol Graph Model 17(1):57

    CAS  Google Scholar 

  36. Lin J-H, Perryman AL, Schames JR, McCammon JA (2002) J Am Chem Soc 124(20):5632

    Article  CAS  Google Scholar 

  37. Amaro RE, Baron R, McCammon JA (2008) J Comput Aided Mol Des 22(9):693

    Article  CAS  Google Scholar 

  38. Nichols SE, Baron R, Ivetac A, McCammon JA (2011) J Chem Inf Model 51(6):1439

    Article  CAS  Google Scholar 

  39. Lin JH, Perryman AL, Schames JR, McCammon JA (2003) Biopolymers 68(1):47

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the I.T. staff at The Scripps Research Institute (especially Jean-Christophe Ducom, and Lisa Dong) for maintaining a great Linux cluster and for giving the Levy lab access to it for their BEDAM calculations. This research was funded by the HIVE center Grant (P50 GM103368) and by the AutoDock grant (R01 GM069832).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. Olson.

Additional information

Alexander L. Perryman and Daniel N. Santiago have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10822_2014_9709_MOESM1_ESM.docx

Raw data used to choose LEDGF receptor models. Visual analysis was used for receptor evaluation since AUC values from ROC curves were too similar. After Phase 1 and 2 submissions to SAMPL, the visual analysis was formalized in creating the Rank Difference Ratio metric (see Fig. 4). For A and B the relative ranks for LEDGF ligands are listed in column 1, and the absolute ranks versus each target are listed in the subsequent columns underneath the PDB ID for that receptor model. The receptor models that were selected as targets are highlighted in magenta in row 1. For each block of 10 rows; the minimum (in green), average (in white), and maximum (in red) values of the absolute ranks were calculated and colored. More predictive targets have more green and white in each block and less red, they have more blocks (i.e., more LEDGF ligands were ranked higher than decoys), and the numbers in each cell will be closer to the relative rankings (“line numbers” in column 1). The compounds that were harvested in (A) had to pass the following filter: a minimum of 2 hydrogen bonds to IN and a hydrogen bond to the backbone amino group of Glu170. The compounds that were harvested in (B) had to pass the following filter: a minimum of 2 hydrogen bonds to IN and a hydrogen bond to the backbone amino group of His171. (DOCX 306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perryman, A.L., Santiago, D.N., Forli, S. et al. Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein–ligand binding challenge. J Comput Aided Mol Des 28, 429–441 (2014). https://doi.org/10.1007/s10822-014-9709-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9709-3

Keywords

Navigation