Skip to main content
Log in

Estimation of the size of drug-like chemical space based on GDB-17 data

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The goal of this paper is to estimate the number of realistic drug-like molecules which could ever be synthesized. Unlike previous studies based on exhaustive enumeration of molecular graphs or on combinatorial enumeration preselected fragments, we used results of constrained graphs enumeration by Reymond to establish a correlation between the number of generated structures (M) and the number of heavy atoms (N): logM = 0.584 × N × logN + 0.356. The number of atoms limiting drug-like chemical space of molecules which follow Lipinsky’s rules (N = 36) has been obtained from the analysis of the PubChem database. This results in M ≈ 1033 which is in between the numbers estimated by Ertl (1023) and by Bohacek (1060).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pólya G, Read RC (1987) Combinatorial enumeration of groups, graphs, and chemical compounds. Springer-Verlag Inc., New York

    Book  Google Scholar 

  2. Bergeron F, Labelle G, Leroux P (1997) Combinatorial species and tree-like structures, vol 67. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Fujita S (1991) Symmetry and combinatorial enumeration in chemistry, vol 8. Springer-Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  4. Henze HR, Blair CM (1931) The number of isomeric hydrocarbons of the methane series. J Am Chem Soc 53(8):3077–3085. doi:10.1021/ja01359a034

    Article  CAS  Google Scholar 

  5. Blair CM, Henze HR (1932) The number of stereoisomeric and non-stereoisomeric paraffin hydrocarbons. J Am Chem Soc 54(4):1538–1545. doi:10.1021/ja01343a044

    Article  CAS  Google Scholar 

  6. Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16(1):3–50. doi:10.1002/(sici)1098-1128(199601)16:1<3:aid-med1>3.0.co;2-6

    Article  CAS  Google Scholar 

  7. Ertl P (2002) Cheminformatics Analysis of Organic Substituents: identification of the most common substituents, calculation of substituent properties, and automatic identification of drug-like bioisosteric groups. J Chem Inf Comput Sci 43(2):374–380. doi:10.1021/ci0255782

    Google Scholar 

  8. Weaver DF, Weaver CA (2011) Exploring neurotherapeutic space: how many neurological drugs exist (or could exist)? J Pharm Pharmacol 63(1):136–139. doi:10.1111/j.2042-7158.2010.01161.x

    Article  CAS  Google Scholar 

  9. Fink T, Bruggesser H, Reymond J-L (2005) Virtual exploration of the small-molecule chemical universe below 160 Daltons. Angew Chem Int Ed 44(10):1504–1508. doi:10.1002/anie.200462457

    Article  CAS  Google Scholar 

  10. Ruddigkeit L, van Deursen R, Blum LC, Reymond J-L (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model 52(11):2864–2875. doi:10.1021/ci300415d

    Article  CAS  Google Scholar 

  11. Cayley E (1875) Ueber die analytischen Figuren, welche in der Mathematik Bäume genannt werden und ihre Anwendung auf die Theorie chemischer Verbindungen. Ber Dtsch Chem Ges 8(2):1056–1059. doi:10.1002/cber.18750080252

    Article  Google Scholar 

  12. Herrmann F (1897) Ueber das Problem, die Anzahl der isomeren Paraffine von der Formel CnH2n + 2 zu bestimmen. Ber Dtsch Chem Ges 30(3):2423–2426. doi:10.1002/cber.18970300310

    Article  CAS  Google Scholar 

  13. Schiff H (1875) Zur Statistik chemischer Verbindungen. Ber Dtsch Chem Ges 8(2):1542–1547. doi:10.1002/cber.187500802191

    Article  Google Scholar 

  14. Losanitsch SM (1897) Die Isomerie-Arten bei den Homologen der Paraffin-Reihe. Ber Dtsch Chem Ges 30(2):1917–1926. doi:10.1002/cber.189703002144

    Article  CAS  Google Scholar 

  15. Perry D (1932) The number of structural isomers of certain homologs of methane and methanol. J Am Chem Soc 54(7):2918–2920. doi:10.1021/ja01346a035

    Article  CAS  Google Scholar 

  16. Polya G (1936) Algebraische Berechnung der Anzahl der Isomeren einiger organischer Verbindungen, Zeit. f. Kristall

  17. Harary F, Norman RZ (1960) Dissimilarity characteristic theorems for graphs. Proc Am Math Soc 11(2):332–334

    Article  Google Scholar 

  18. Read R (1976) The enumeration of acyclic chemical compounds. Academic Press, New York

    Google Scholar 

  19. Robinson RW, Harry F, Balaban AT (1976) The numbers of chiral and achiral alkanes and monosubstituted alkanes. Tetrahedron 32(3):355–361. doi:10.1016/0040-4020(76)80049-X

    Article  CAS  Google Scholar 

  20. Cyvin SJ, Brunvoll J, Cyvin BN (1995) Enumeration of constitutional isomers of polyenes. J Mol Struct THEOCHEM 357(3):255–261. doi:10.1016/0166-1280(95)04329-6

    Article  CAS  Google Scholar 

  21. Sloane NJA, Sloane N (1973) A handbook of integer sequences, vol 65. Academic Press, New York

    Google Scholar 

  22. Leonard JE, Hammond GS, Simmons HE (1975) Apparent symmetry of cyclohexane. J Am Chem Soc 97(18):5052–5054. doi:10.1021/ja00851a003

    Article  CAS  Google Scholar 

  23. Weininger D (2002) Combinatorics of small molecular structures. In: Encyclopedia of computational chemistry. John Wiley & Sons, Ltd. doi:10.1002/0470845015.cna014m

  24. Ogata K, Isomura T, Yamashita H, Kubodera H (2007) A quantitative approach to the estimation of chemical space from a given geometry by the combination of atomic species. QSAR Comb Sci 26(5):596–607. doi:10.1002/qsar.200630037

    Article  CAS  Google Scholar 

  25. Drew KLM, Baiman H, Khwaounjoo P, Yu B, Reynisson J (2012) Size estimation of chemical space: how big is it? J Pharm Pharmacol 64(4):490–495. doi:10.1111/j.2042-7158.2011.01424.x

    Article  CAS  Google Scholar 

  26. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening—an overview. Drug Discov Today 3(4):160–178. doi:10.1016/S1359-6446(97)01163-X

    Article  CAS  Google Scholar 

  27. Gorse A-D (2006) Diversity in medicinal chemistry space. Curr Trends Med Chem 6(1):3–18

    Article  CAS  Google Scholar 

  28. Mario Geysen H, Schoenen F, Wagner D, Wagner R (2003) Combinatorial compound libraries for drug discovery: an ongoing challenge. Nat Rev Drug Discov 2(3):222–230

    Article  CAS  Google Scholar 

  29. Valler MJ, Green D (2000) Diversity screening versus focussed screening in drug discovery. Drug Discov Today 5(7):286–293. doi:10.1016/S1359-6446(00)01517-8

    Article  Google Scholar 

  30. Giménez O, Noy M (2005) The number of planar graphs and properties of random planar graphs. In: International conference on analysis of algorithms DMTCS proc. AD, Barcelona, Spain, 6-10 June 2005. Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France. p 147–156

  31. R: A Language and Environment for Statistical Computing (2012) R Foundation for Statistical Computing, Vienna, Austria

  32. Lipinski C (1995) Computational alerts for potential absorption problems: profiles of clinically tested drugs. Paper presented at the tools for oral absorption. Part II. Predicting human absorption. BIOTEC. PDD symposium, AAPS, Miami

  33. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768. doi:10.1021/ci3001277

    Article  CAS  Google Scholar 

  34. Shoichet BK (2013) Drug discovery: nature’s pieces. Nat Chem 5(1):9–10

    Article  CAS  Google Scholar 

  35. Gillet VJ, Khatib W, Willett P, Fleming PJ, Green DVS (2002) Combinatorial library design using a multiobjective genetic algorithm. J Chem Inf Comput Sci 42(2):375–385. doi:10.1021/ci010375j

    Article  CAS  Google Scholar 

  36. van Deursen R, Reymond J-L (2007) Chemical space travel. ChemMedChem 2(5):636–640. doi:10.1002/cmdc.200700021

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. I. Baskin, Prof. I. Antipin and Dr. G. Marcou for valuable comments. PP thanks the French Embassy in Ukraine for the support of his stay at the University of Strasbourg in 2012. TM acknowledges Kazan Federal University for the support of his stay at the University of Strasbourg in 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Varnek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polishchuk, P.G., Madzhidov, T.I. & Varnek, A. Estimation of the size of drug-like chemical space based on GDB-17 data. J Comput Aided Mol Des 27, 675–679 (2013). https://doi.org/10.1007/s10822-013-9672-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-013-9672-4

Keywords

Navigation