Abstract
The goal of this paper is to estimate the number of realistic drug-like molecules which could ever be synthesized. Unlike previous studies based on exhaustive enumeration of molecular graphs or on combinatorial enumeration preselected fragments, we used results of constrained graphs enumeration by Reymond to establish a correlation between the number of generated structures (M) and the number of heavy atoms (N): logM = 0.584 × N × logN + 0.356. The number of atoms limiting drug-like chemical space of molecules which follow Lipinsky’s rules (N = 36) has been obtained from the analysis of the PubChem database. This results in M ≈ 1033 which is in between the numbers estimated by Ertl (1023) and by Bohacek (1060).
Similar content being viewed by others
References
Pólya G, Read RC (1987) Combinatorial enumeration of groups, graphs, and chemical compounds. Springer-Verlag Inc., New York
Bergeron F, Labelle G, Leroux P (1997) Combinatorial species and tree-like structures, vol 67. Cambridge University Press, Cambridge
Fujita S (1991) Symmetry and combinatorial enumeration in chemistry, vol 8. Springer-Verlag, Berlin, Heidelberg
Henze HR, Blair CM (1931) The number of isomeric hydrocarbons of the methane series. J Am Chem Soc 53(8):3077–3085. doi:10.1021/ja01359a034
Blair CM, Henze HR (1932) The number of stereoisomeric and non-stereoisomeric paraffin hydrocarbons. J Am Chem Soc 54(4):1538–1545. doi:10.1021/ja01343a044
Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16(1):3–50. doi:10.1002/(sici)1098-1128(199601)16:1<3:aid-med1>3.0.co;2-6
Ertl P (2002) Cheminformatics Analysis of Organic Substituents: identification of the most common substituents, calculation of substituent properties, and automatic identification of drug-like bioisosteric groups. J Chem Inf Comput Sci 43(2):374–380. doi:10.1021/ci0255782
Weaver DF, Weaver CA (2011) Exploring neurotherapeutic space: how many neurological drugs exist (or could exist)? J Pharm Pharmacol 63(1):136–139. doi:10.1111/j.2042-7158.2010.01161.x
Fink T, Bruggesser H, Reymond J-L (2005) Virtual exploration of the small-molecule chemical universe below 160 Daltons. Angew Chem Int Ed 44(10):1504–1508. doi:10.1002/anie.200462457
Ruddigkeit L, van Deursen R, Blum LC, Reymond J-L (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model 52(11):2864–2875. doi:10.1021/ci300415d
Cayley E (1875) Ueber die analytischen Figuren, welche in der Mathematik Bäume genannt werden und ihre Anwendung auf die Theorie chemischer Verbindungen. Ber Dtsch Chem Ges 8(2):1056–1059. doi:10.1002/cber.18750080252
Herrmann F (1897) Ueber das Problem, die Anzahl der isomeren Paraffine von der Formel CnH2n + 2 zu bestimmen. Ber Dtsch Chem Ges 30(3):2423–2426. doi:10.1002/cber.18970300310
Schiff H (1875) Zur Statistik chemischer Verbindungen. Ber Dtsch Chem Ges 8(2):1542–1547. doi:10.1002/cber.187500802191
Losanitsch SM (1897) Die Isomerie-Arten bei den Homologen der Paraffin-Reihe. Ber Dtsch Chem Ges 30(2):1917–1926. doi:10.1002/cber.189703002144
Perry D (1932) The number of structural isomers of certain homologs of methane and methanol. J Am Chem Soc 54(7):2918–2920. doi:10.1021/ja01346a035
Polya G (1936) Algebraische Berechnung der Anzahl der Isomeren einiger organischer Verbindungen, Zeit. f. Kristall
Harary F, Norman RZ (1960) Dissimilarity characteristic theorems for graphs. Proc Am Math Soc 11(2):332–334
Read R (1976) The enumeration of acyclic chemical compounds. Academic Press, New York
Robinson RW, Harry F, Balaban AT (1976) The numbers of chiral and achiral alkanes and monosubstituted alkanes. Tetrahedron 32(3):355–361. doi:10.1016/0040-4020(76)80049-X
Cyvin SJ, Brunvoll J, Cyvin BN (1995) Enumeration of constitutional isomers of polyenes. J Mol Struct THEOCHEM 357(3):255–261. doi:10.1016/0166-1280(95)04329-6
Sloane NJA, Sloane N (1973) A handbook of integer sequences, vol 65. Academic Press, New York
Leonard JE, Hammond GS, Simmons HE (1975) Apparent symmetry of cyclohexane. J Am Chem Soc 97(18):5052–5054. doi:10.1021/ja00851a003
Weininger D (2002) Combinatorics of small molecular structures. In: Encyclopedia of computational chemistry. John Wiley & Sons, Ltd. doi:10.1002/0470845015.cna014m
Ogata K, Isomura T, Yamashita H, Kubodera H (2007) A quantitative approach to the estimation of chemical space from a given geometry by the combination of atomic species. QSAR Comb Sci 26(5):596–607. doi:10.1002/qsar.200630037
Drew KLM, Baiman H, Khwaounjoo P, Yu B, Reynisson J (2012) Size estimation of chemical space: how big is it? J Pharm Pharmacol 64(4):490–495. doi:10.1111/j.2042-7158.2011.01424.x
Walters WP, Stahl MT, Murcko MA (1998) Virtual screening—an overview. Drug Discov Today 3(4):160–178. doi:10.1016/S1359-6446(97)01163-X
Gorse A-D (2006) Diversity in medicinal chemistry space. Curr Trends Med Chem 6(1):3–18
Mario Geysen H, Schoenen F, Wagner D, Wagner R (2003) Combinatorial compound libraries for drug discovery: an ongoing challenge. Nat Rev Drug Discov 2(3):222–230
Valler MJ, Green D (2000) Diversity screening versus focussed screening in drug discovery. Drug Discov Today 5(7):286–293. doi:10.1016/S1359-6446(00)01517-8
Giménez O, Noy M (2005) The number of planar graphs and properties of random planar graphs. In: International conference on analysis of algorithms DMTCS proc. AD, Barcelona, Spain, 6-10 June 2005. Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France. p 147–156
R: A Language and Environment for Statistical Computing (2012) R Foundation for Statistical Computing, Vienna, Austria
Lipinski C (1995) Computational alerts for potential absorption problems: profiles of clinically tested drugs. Paper presented at the tools for oral absorption. Part II. Predicting human absorption. BIOTEC. PDD symposium, AAPS, Miami
Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768. doi:10.1021/ci3001277
Shoichet BK (2013) Drug discovery: nature’s pieces. Nat Chem 5(1):9–10
Gillet VJ, Khatib W, Willett P, Fleming PJ, Green DVS (2002) Combinatorial library design using a multiobjective genetic algorithm. J Chem Inf Comput Sci 42(2):375–385. doi:10.1021/ci010375j
van Deursen R, Reymond J-L (2007) Chemical space travel. ChemMedChem 2(5):636–640. doi:10.1002/cmdc.200700021
Acknowledgments
Authors thank Dr. I. Baskin, Prof. I. Antipin and Dr. G. Marcou for valuable comments. PP thanks the French Embassy in Ukraine for the support of his stay at the University of Strasbourg in 2012. TM acknowledges Kazan Federal University for the support of his stay at the University of Strasbourg in 2012.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Polishchuk, P.G., Madzhidov, T.I. & Varnek, A. Estimation of the size of drug-like chemical space based on GDB-17 data. J Comput Aided Mol Des 27, 675–679 (2013). https://doi.org/10.1007/s10822-013-9672-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-013-9672-4