Skip to main content
Log in

Understanding the molecular interactions of different radical scavengers with ribonucleotide reductase M2 (hRRM2) domain: opening the gates and gaining access

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We employed a combination of molecular docking and dynamics to understand the interaction of three different radical scavengers (SB-HSC21, ABNM13 and trimidox) with ribonucleotide reductase M2 (hRRM2) domain. On the basis of the observed results, we can propose how these ligands interact with the enzyme, and cease the radical transfer step from the di-iron center to TYR176. All the ligands alter the electron density over TYR176, –OH group by forming an extremely stable H-bond with either –NHOH group, or with phenolic hydroxyl group of the ligands. This change in electronic density disrupts the water bridge between TYR176, –OH and the di-iron center, which stops the single electron transfer process from TYR176, –OH to iron. As a consequence the enzyme is inhibited. Another interesting observation that we are reporting is the two stage gate keeping mechanism of the RR active site tunnel. We describe these as the outer Gate-1 controlled by ARG330, and the inner Gate-2 controlled by SER263, PHE240, and PHE236. We also observed a dynamic conformational shift in these residues, the incoming ligands can go through, and interact with the underlying TYR176, –OH group. From the study we found the active—site of hRRM2 is extremely flexible and shows a significant induced fit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Shao J, Zhou B, Chu B, Yen Y (2006) Ribonucleotide reductase inhibitors and future drug design. Curr Cancer Drug Targets 6:409

    Article  CAS  Google Scholar 

  2. Cerqueira NM, Pereira S, Fernandes PA, Ramos MJ (2005) Overview of ribonucleotide reductase inhibitors: an appealing target in anti-tumour therapy. Curr Med Chem 12:1283

    Article  CAS  Google Scholar 

  3. Stubbe JA, Nocera DG, Yee CS, Chang MCY (2003) Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem Rev 103:2167

    Article  CAS  Google Scholar 

  4. Stubbe JA, van der Donk WA (1998) Protein radicals in enzyme catalysis. Chem Rev 98:705

    Article  CAS  Google Scholar 

  5. Jordan A, Reichard P (1998) Ribonucleotide reductases. Annu Rev Biochem 67:71

    Article  CAS  Google Scholar 

  6. Reichard P (1993) From RNA to DNA, why so many ribonucleotide reductases? Science 260:1773

    Article  CAS  Google Scholar 

  7. Reichard P, Ehrenberg A (1983) Ribonucleotide reductase—a radical enzyme. Science 221:514

    Article  CAS  Google Scholar 

  8. Jordan A, Pontis E, Atta M, Krook M, Gibert I, Barbe J, Reichard P (1994) A second class I ribonucleotide reductase in enterobacteriaceae: characterization of the Salmonella typhimurium enzyme. Proc Natl Acad Sci USA 91:12892

    Article  CAS  Google Scholar 

  9. Högbom M, Stenmark P, Voevodskaya N, McClarty G, Gräslund A, Nordlund P (2004) The radical site in chlamydial ribonucleotide reductase defines a new R2 subclass. Science 305:245

    Article  Google Scholar 

  10. Smith BD, Karp JE (2003) Ribonucleotide reductase: an old target with new potential. Leuk Res 27:1075

    Article  Google Scholar 

  11. Nocentini G (1996) Ribonucleotide reductase inhibitors: new strategies for cancer chemotherapy. Crit Rev Oncol Hematol 22:89

    Article  CAS  Google Scholar 

  12. Holland KP, Elford HL, Bracchi V, Annis CG, Schuster SM, Chakrabarti D (1998) Antimalarial activities of polyhydroxyphenyl and hydroxamic acid derivatives. Antimicrob Agents Chemother 42:2456

    CAS  Google Scholar 

  13. Yun D, Saleh L, García-Serres R, Chicalese BM, An YH, Huynh BH, Bollinger JM Jr (2007) Addition of oxygen to the diiron (II/II) cluster is the slowest step in formation of the tyrosyl radical in the W103Y variant of ribonucleotide reductase protein R2 from mouse. Biochemistry 46:13067

    Article  CAS  Google Scholar 

  14. Smith P, Zhou B, Ho N, Yuan YC, Su L, Tsai SC, Yen Y (2009) 2.6 Å X-ray crystal structure of human p53R2, a p53-inducible ribonucleotide reductase. Biochemistry 48:11134

    Article  CAS  Google Scholar 

  15. Strand KR, Karlsen S, Kolberg M, Røhr ÅK, Görbitz CH, Andersson KK (2004) Crystal structural studies of changes in the native dinuclear iron center of ribonucleotide reductase protein R2 from mouse. J Biol Chem 279:46794

    Article  CAS  Google Scholar 

  16. Logan DT, Su XD, Åberg A, Regnström K, Hajdu J, Eklund H, Nordlund P (1996) Crystal structure of reduced protein R2 of ribonucleotide reductase: the structural basis for oxygen activation at a dinuclear iron site. Structure 4:1053

    Article  CAS  Google Scholar 

  17. Nordlund P, Sjöberg BM, Eklund H (1990) Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature 345:593

    Google Scholar 

  18. Nordlund P, Eklund H (1993) Structure and function of the Escherichia coli ribonucleotide reductase protein R2. J Mol Biol 232:123

    Article  CAS  Google Scholar 

  19. Končić MZ, Barbarić M, Perković I, Zorc B (2011) Antiradical, chelating and antioxidant activities of hydroxamic acids and hydroxyureas. Molecules 16:6232

    Article  Google Scholar 

  20. Fritzer-Szekeres M, Grusch M, Luxbacher C, Horvath S, Krupitza G, Elford HL, Szekeres T (2000) Trimidox, an inhibitor of ribonucleotide reductase, induces apoptosis and activates caspases in HL-60 promyelocytic leukemia cells. Exp Hematol 28:924

    Article  CAS  Google Scholar 

  21. Ren S, Wang R, Komatsu K, Bonaz-Krause P, Zyrianov Y, McKenna CE, Csipke C, Tokes ZA, Lien EJ (2002) Synthesis, biological evaluation, and quantitative structure-activity relationship analysis of new Schiff bases of hydroxysemicarbazide as potential antitumor agents. J Med Chem 45:410

    Article  CAS  Google Scholar 

  22. Shao J, Zhou B, Zhu L, Bilio AJ, Su L, Yuan YC, Ren S, Lien EJ, Shih J, Yen Y (2005) Determination of the potency and subunit-selectivity of ribonucleotide reductase inhibitors with a recombinant-holoenzyme-based in vitro assay. Biochem Pharmacol 69:627

    Article  CAS  Google Scholar 

  23. Elford HL (1994) assignee. Method of treating hemoglobinopathies. US Patent 5,366,996

  24. Basu A, Sinha BN, Saiko P, Graser G, Szekeres T (2011) N-hydroxy-N′-aminoguanidines as anti-cancer lead molecule: QSAR, synthesis and biological evaluation. Bioorg Med Chem Lett 21:3324

    Google Scholar 

  25. Saiko P, Graser G, Giessrigl B, Lackner A, Grusch M, Krupitza G, Basu A, Sinha B, Jayaprakash V, Jaeger W (2011) A novel N-hydroxy-N′-aminoguanidine derivative inhibits ribonucleotide reductase activity: effects in human HL-60 promyelocytic leukemia cells and synergism with arabinofuranosylcytosine (Ara-C). Biochem Pharmacol 81:50

    Article  CAS  Google Scholar 

  26. Krishnan K, Prathiba K, Jayaprakash V, Basu A, Mishra N, Zhou B, Hu S, Yen Y (2008) Synthesis and ribonucleotide reductase inhibitory activity of thiosemicarbazones. Bioorg Med Chem Lett 18:6248

    Article  CAS  Google Scholar 

  27. Himo F, Siegbahn PEM (2003) Quantum chemical studies of radical-containing enzymes. Chem Rev 103:2421

    Article  CAS  Google Scholar 

  28. Torrent M, Musaev DG, Basch H, Morokuma K (2002) Computational studies of reaction mechanisms of methane monooxygenase and ribonucleotide reductase. J Comput Chem 23:59

    Article  CAS  Google Scholar 

  29. Lynch J, Juarez-Garcia C, Münck E, Que L Jr (1989) Mössbauer and EPR studies of the binuclear iron center in ribonucleotide reductase from Escherichia coli. a new iron-to-protein stoichiometry. J Biol Chem 264:8091

    CAS  Google Scholar 

  30. Elgren TE, Hendrich MP, Que L Jr (1993) Azide binding to the diferrous clusters of the R2 protein of ribonucleotide reductase from Escherichia coli. J Am Chem Soc 115:9291

    Article  CAS  Google Scholar 

  31. Bell CL, Nambury C, Bauer L (1964) The structure of amidoximes. J Org Chem 29:2873

    Article  CAS  Google Scholar 

  32. Kjøller Larsen I, Sjöoberg BM, Thelander L (1982) Characterization of the active site of ribonucleotide reductase of Escherichia coli, bacteriophage T4 and mammalian cells by inhibition studies with hydroxyurea analogues. Eur J Biochem 125:75

    Article  Google Scholar 

Download references

Acknowledgments

We thank University Grants Commission for providing necessary financial support for the current work. We also thank Mrs. Nibha Mishra and Dr. Venkatesan J for proofreading our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Basu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, A., Sinha, B.N. Understanding the molecular interactions of different radical scavengers with ribonucleotide reductase M2 (hRRM2) domain: opening the gates and gaining access. J Comput Aided Mol Des 26, 865–881 (2012). https://doi.org/10.1007/s10822-012-9581-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-012-9581-y

Keywords

Navigation