Skip to main content

Docking performance of the glide program as evaluated on the Astex and DUD datasets: a complete set of glide SP results and selected results for a new scoring function integrating WaterMap and glide


Glide SP mode enrichment results for two preparations of the DUD dataset and native ligand docking RMSDs for two preparations of the Astex dataset are presented. Following a best-practices preparation scheme, an average RMSD of 1.140 Å for native ligand docking with Glide SP is computed. Following the same best-practices preparation scheme for the DUD dataset an average area under the ROC curve (AUC) of 0.80 and average early enrichment via the ROC (0.1 %) metric of 0.12 were observed. 74 and 56 % of the 39 best-practices prepared targets showed AUC over 0.7 and 0.8, respectively. Average AUC was greater than 0.7 for all best-practices protein families demonstrating consistent enrichment performance across a broad range of proteins and ligand chemotypes. In both Astex and DUD datasets, docking performance is significantly improved employing a best-practices preparation scheme over using minimally-prepared structures from the PDB. Enrichment results for WScore, a new scoring function and sampling methodology integrating WaterMap and Glide, are presented for four DUD targets, hivrt, hsp90, cdk2, and fxa. WScore performance in early enrichment is consistently strong and all systems examined show AUC > 0.9 and superior early enrichment to DUD best-practices Glide SP results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin P (2004) J Med Chem 47(7):1739–1749

    Article  CAS  Google Scholar 

  2. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) J Med Chem 47(7):1750–1759

    Article  CAS  Google Scholar 

  3. Hartshorn MJ, Verkonk ML, Chessari G, Brewerton SC, Mooij WTM, Mortenson PN, Murray CW (2007) J Med Chem 50(4):726–741

    Article  CAS  Google Scholar 

  4. Huang N, Shoichet BK, Irwin JJ (2006) J Med Chem 49(23):6789–6801

    Article  CAS  Google Scholar 

  5. Abel R, Young T, Farid R, Berne BJ, Friesner RA (2008) J Am Chem Soc 130(9):2817–2831

    Article  CAS  Google Scholar 

  6. Vagin A, Steiner R, Lebedev A, Potterton L, McNicholas S, Long F, Murshudov G (2004) Acta Cryst D60:2284–2295

    Google Scholar 

  7. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) J Mol Biol 285(4):1735–1747

    Article  CAS  Google Scholar 

  8. Wlodek S, Skillman AG, Nicholls A (2010) J Chem Theory Comput 6(7):2140–2152

    Article  CAS  Google Scholar 

  9. Halgren TA (1999) J Comp Chem 20(7):720–729

    Article  CAS  Google Scholar 

  10. Maestro v9.2. Schrödinger LLC. New York

  11. DUD v2.

  12. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  13. Prime v3.0. Schrödinger LLC. New York

  14. MOE. Chemical Computing Group, Inc. Montreal

  15. LigPrep v2.5. Schrödinger LLC. New York

  16. Jorissen RN, Gilson MK (2005) J Chem Inf Model 45(3):549–561

    Article  CAS  Google Scholar 

  17. Epik v2.2. Schrödinger LLC. New York

  18. Macromodel v9.9. Schrödinger LLC. New York

  19. Glide v5.7. Schrödinger LLC. New York

  20. Sherman W, Beard HS, Farid R (2006) Chem Biol Drug Des 67:83–84

    Article  CAS  Google Scholar 

  21. Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) J Med Chem 49:534–554

    Article  CAS  Google Scholar 

  22. Young T, Abel R, Kim B, Berne B, Friesner RA (2007) PNAS 104:808–813

    Article  CAS  Google Scholar 

  23. Abel R, Young T, Farid R, Berne B, Friesner RA (2008) J Am Chem Soc 130:2817–2831

    Article  CAS  Google Scholar 

  24. Beuming T, Farid R, Sherman W (2009) Protein Sci 18:1609–1619

    Article  CAS  Google Scholar 

  25. Pearlstein R, Hu Q, Zhou J, Yowe D, Levell J, Dale B, Kaushik V, Daniels D, Hanrahan S, Sherman W, Abel R (2010) Proteins 78:2571–2586

    CAS  Google Scholar 

  26. Higgs C, Beuming T, Sherman W (2010) ACS Med Chem Lett 1:160–164

    Article  CAS  Google Scholar 

  27. Robinson D, Sherman W, Farid R (2010) Chem Med Chem 5:618–627

    CAS  Google Scholar 

  28. Abel R, Salam N, Shelley J, Farid R, Friesner RA, Sherman W (2011) Chem Med Chem 6:1049–1066

    CAS  Google Scholar 

  29. Lazaridis T (1998) J Phys Chem B 102:3531–3541

    Article  CAS  Google Scholar 

  30. Lazaridis T, Karplus M (1996) J Chem Phys 105:4294–4316

    Article  CAS  Google Scholar 

  31. Lazaridis T, Paulatis ME (1992) J Phys Chem 96:3847–3855

    Article  CAS  Google Scholar 

  32. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) J Med Chem 49(21):6177–6196

    Article  CAS  Google Scholar 

Download references


The authors would like to thank Nick A. Boyles, Amy R. Rask, K. Shawn Watts, and Carolyn M. McQuaw of Schrödinger, LLC for their collection and curation of ligand binding affinities from the DUD and Astex ligand sets.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Matthew P. Repasky.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Repasky, M.P., Murphy, R.B., Banks, J.L. et al. Docking performance of the glide program as evaluated on the Astex and DUD datasets: a complete set of glide SP results and selected results for a new scoring function integrating WaterMap and glide. J Comput Aided Mol Des 26, 787–799 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Docking
  • Virtual screening
  • DUD
  • Astex
  • WScore
  • WaterMap
  • Glide