Skip to main content
Log in

Predicting the effects of amino acid replacements in peptide hormones on their binding affinities for class B GPCRs and application to the design of secretin receptor antagonists

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Computational prediction of the effects of residue changes on peptide-protein binding affinities, followed by experimental testing of the top predicted binders, is an efficient strategy for the rational structure-based design of peptide inhibitors. In this study we apply this approach to the discovery of competitive antagonists for the secretin receptor, the prototypical member of class B G protein-coupled receptors (GPCRs). Proteins in this family are involved in peptide hormone-stimulated signaling and are implicated in several human diseases, making them potential therapeutic targets. We first validated our computational method by predicting changes in the binding affinities of several peptides to their cognate class B GPCRs due to alanine replacement and compared the results with previously published experimental values. Overall, the results showed a significant correlation between the predicted and experimental ΔΔG values. Next, we identified candidate inhibitors by applying this method to a homology model of the secretin receptor bound to an N-terminal truncated secretin peptide. Predictions were made for single residue replacements to each of the other nineteen naturally occurring amino acids at peptide residues within the segment binding the receptor N-terminal domain. Amino acid replacements predicted to most enhance receptor binding were then experimentally tested by competition-binding assays. We found two residue changes that improved binding affinities by almost one log unit. Furthermore, a peptide combining both of these favorable modifications resulted in an almost two log unit improvement in binding affinity, demonstrating the approximately additive effect of these changes on binding. In order to further investigate possible physical effects of these residue changes on receptor binding affinity, molecular dynamics simulations were performed on representatives of the successful peptide analogues (namely A17I, G25R, and A17I/G25R) in bound and unbound forms. These simulations suggested that a combination of the α-helical propensity of the unbound peptide and specific interactions between the peptide and the receptor extracellular domain contribute to their higher binding affinities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1(9):727–730

    Article  CAS  Google Scholar 

  2. Hoare SRJ (2005) Mechanisms of peptide and nonpeptide ligand binding to Class B G-protein-coupled receptors. Drug Discov Today 10(6):417–427

    Article  CAS  Google Scholar 

  3. Parthier C et al (2009) Passing the baton in class B GPCRs: peptide hormone activation via helix induction? Trends Biochem Sci 34(6):303–310

    Article  CAS  Google Scholar 

  4. Underwood CR et al (2010) Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor. J Biol Chem 285(1):723–730

    Article  CAS  Google Scholar 

  5. Pioszak AA, Xu HE (2008) Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proc Natl Acad Sci USA 105(13):5034–5039

    Article  CAS  Google Scholar 

  6. Parthier C et al (2007) Crystal structure of the incretin-bound extracellular domain of a G protein-coupled receptor. Proc Natl Acad Sci USA 104(35):13942–13947

    Article  CAS  Google Scholar 

  7. Pioszak AA et al (2008) Molecular recognition of corticotropin-releasing factor by its G-protein-coupled receptor CRFR1. J Biol Chem 283(47):32900–32912

    Article  CAS  Google Scholar 

  8. Runge S et al (2008) Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain. J Biol Chem 283(17):11340–11347

    Article  CAS  Google Scholar 

  9. Igarashi H et al (2002) Elucidation of the vasoactive intestinal peptide pharmacophore for VPAC2 receptors in human and rat and comparison to the pharmacophore for VPAC1 receptors. J Pharmacol Exp Ther 303(2):445–460

    Article  CAS  Google Scholar 

  10. Dong M et al (2011) Importance of each residue within secretin for receptor binding and biological activity. Biochem 50(14):2983–2993

    Article  CAS  Google Scholar 

  11. Dean T et al (2006) Role of amino acid side chains in region 17–31 of parathyroid hormone (PTH) in binding to the PTH receptor. J Biol Chem 281(43):32485–32495

    Article  CAS  Google Scholar 

  12. Adelhorst K et al (1994) Structure-activity studies of glucagon-like peptide-1. J Biol Chem 269(9):6275–6278

    CAS  Google Scholar 

  13. Nicole P et al (2000) Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. J Biol Chem 275(31):24003–24012

    Article  CAS  Google Scholar 

  14. Kortemme T, Baker D (2002) A simple physical model for binding energy hot spots in protein–protein complexes. Proc Natl Acad Sci USA 99(22):14116–14121

    Article  CAS  Google Scholar 

  15. Kortemme T, Kim DE, Baker D (2004) Computational alanine scanning of protein–protein interfaces. Sci STKE 219:12

    Google Scholar 

  16. Bordner AJ, Abagyan RA (2004) Large scale prediction of protein geometry and stability changes for arbitrary single point mutations. Proteins: Struct Funct Bioinform 57(2):400–413

    Article  CAS  Google Scholar 

  17. Abagyan R, Totrov M (1994) Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol 235(3):983–1002

    Article  CAS  Google Scholar 

  18. Cohen M et al (2008) Similar chemistry, but different bond preferences in inter versus intra protein interactions. Proteins: Struct Funct Bioinform 72(2):741–753

    Article  CAS  Google Scholar 

  19. Dong M et al (2011) Lactam constraints provide insights into the receptor-bound conformation of secretin and stabilize a receptor antagonist. Biochem 50(38):8181–8192

    CAS  Google Scholar 

  20. Rose PW et al (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39(suppl 1):D392–D401

    Article  Google Scholar 

  21. Abagyan R, Totrov M, Kuznetsov D (1994) ICM-A new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15(5):488–506

    Article  CAS  Google Scholar 

  22. Momany FA et al (1975) Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. J Phys Chem 79(22):2361–2381

    Article  CAS  Google Scholar 

  23. Nemethy G, Pottle MS, Scheraga HA (1983) Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids. J Phys Chem 87(11):1883–1887

    Article  CAS  Google Scholar 

  24. Nemethy G et al (1992) Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides. J Phys Chem 96(15):6472–6484

    Article  CAS  Google Scholar 

  25. Abagyan R (1997) Protein structure prediction by global energy optimization. In: van Gunseteren WF, Weiner PK, Wilkinson AJ (eds) Computer simulation of biomolecular systems: theoretical and experimental applications. Kluwer, Norwell, MA, pp 363–394

    Google Scholar 

  26. Ulrich CD 2nd et al (1993) Intrinsic photoaffinity labeling of native and recombinant rat pancreatic secretin receptors. Gastroenterology 105(5):1534

    Article  CAS  Google Scholar 

  27. Munson PJ, Rodbard D (1980) Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem 107(1):220–239

    Article  CAS  Google Scholar 

  28. Van Der Spoel D et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  Google Scholar 

  29. Lindorff Larsen K et al (2010) Improved side chain torsion potentials for the Amber ff99SB protein force field. Proteins: Struct Funct Bioinform 78(8):1950–1958

    CAS  Google Scholar 

  30. Jorgensen WL et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  31. Berendsen HJC et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  32. Parrinello M, Rahman A (2009) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190

    Article  Google Scholar 

  33. Hess B et al (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  34. Essmann U et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  35. Pozvek G et al (1997) Structure/function relationships of calcitonin analogues as agonists, antagonists, or inverse agonists in a constitutively activated receptor cell system. Mol Pharmacol 51(4):658

    CAS  Google Scholar 

  36. Robberecht P, Conlon TP, Gardner JD (1976) Interaction of porcine vasoactive intestinal peptide with dispersed pancreatic acinar cells from the guinea pig. Structural requirements for effects of vasoactive intestinal peptide and secretin on cellular adenosine 3′: 5′-monophosphate. J Biol Chem 251(15):4635

    CAS  Google Scholar 

  37. Turner JT, Jones SB, Bylund DB (1986) A fragment of vasoactive intestinal peptide, VIP (10–28), is an antagonist of VIP in the colon carcinoma cell line, HT29. Peptides 7(5):849–854

    Article  CAS  Google Scholar 

  38. Bodanszky M et al (1978) Synthesis and some pharmacological properties of the 23-peptide 15-lysine-secretin-(5–27). Special role of the residue in position 15 in biological activity of the vasoactive intestinal polypeptide. J Med Chem 21(11):1171–1173

    Article  CAS  Google Scholar 

  39. Gardner JD et al (1979) Interaction of secretin 5–27 and its analogues with hormone receptors on pancreatic acini. Biochim Biophys Acta 583(4):491–503

    Article  CAS  Google Scholar 

  40. Robberecht P et al (1988) Secretin receptors in human pancreatic membranes. Pancreas 3(5):529–535

    Article  CAS  Google Scholar 

  41. Potapov V, Cohen M, Schreiber G (2009) Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details. Protein Eng Des Sel 22(9):553–560

    Article  CAS  Google Scholar 

  42. Benedix A et al (2009) Predicting free energy changes using structural ensembles. Nat Methods 6(1):3–4

    Article  CAS  Google Scholar 

  43. Yin S, Ding F, Dokholyan NV (2007) Eris: an automated estimator of protein stability. Nat Methods 4(6):466–467

    Article  CAS  Google Scholar 

  44. Kellogg EH, Leaver Fay A, Baker D (2011) Role of conformational sampling in computing mutation induced changes in protein structure and stability. Proteins: Struct Funct Bioinform 79(3):830–838

    Article  CAS  Google Scholar 

  45. Runge S et al (2003) Different domains of the glucagon and glucagon like peptide 1 receptors provide the critical determinants of ligand selectivity. Br J Pharmacol 138(5):787–794

    Article  CAS  Google Scholar 

  46. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mary Lou Augustine and Delia I. Pinon for their excellent technical assistance and the Mayo Clinic Research Computing Services and the Arizona State University Advanced Computing Center for computational resources. This work was supported by the Mayo Clinic and a grant from the National Institutes of Health (DK46577).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Bordner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 2 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Te, J.A., Dong, M., Miller, L.J. et al. Predicting the effects of amino acid replacements in peptide hormones on their binding affinities for class B GPCRs and application to the design of secretin receptor antagonists. J Comput Aided Mol Des 26, 835–845 (2012). https://doi.org/10.1007/s10822-012-9574-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-012-9574-x

Keywords

Navigation