Skip to main content

Predicting binding affinities of host-guest systems in the SAMPL3 blind challenge: the performance of relative free energy calculations

Abstract

Relative free energy calculations based on molecular dynamics simulations are combined with available experimental binding free energies to predict unknown binding affinities of acyclic Cucurbituril complexes in the blind SAMPL3 competition. The predictions yield root mean square errors between 2.6 and 3.2 kcal/mol for seven host-guest systems. Those deviations are comparable to results for solvation free energies of small organic molecules. However, the standard deviations found in our simulations range from 0.4 to 2.4 kcal/mol, which indicates the need for better sampling. Three different approaches are compared. Bennett’s Acceptance Ratio Method and thermodynamic integration based on the trapezoidal rule with 12 λ-points exhibit a root mean square error of 2.6 kcal/mol, while thermodynamic integration with Simpson’s rule and 11 λ-points leads to a root mean square error of 3.2 kcal/mol. In terms of absolute median errors, Bennett’s Acceptance Ratio Method performs better than thermodynamic integration with the trapezoidal rule (1.7 vs. 2.9 kcal/mol). Simulations of the deprotonated forms of the guest molecules exhibit a poorer correspondence to experimental results with a root mean square error of 5.2 kcal/mol. In addition, a decrease of the buffer concentration by approximately 20 mM in the simulations raises the root mean square error to 3.8 kcal/mol.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Oostenbrink C, van Gunsteren W (2005) PNAS 102(19):6750

    Article  CAS  Google Scholar 

  2. Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK, Dill KA (2007) J Mol Biol 371(4):1118

    Article  CAS  Google Scholar 

  3. Kästner J, Senn H, Thiel S, Otte N, Thiel W (2006) J Chem Theory Comput 2(2):452

    Article  Google Scholar 

  4. Mobley DL, Bayly CI, Cooper MD, Shirts MR, Dill KA (2009) J Chem Theory Comput 5(2):350

    Article  CAS  Google Scholar 

  5. Seeliger D, de Groot B (2010) Biophys J 98(10):2309

    Article  CAS  Google Scholar 

  6. Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Bayly CI, Cooper MD, Pande VS (2008) J Med Chem 51:769

    Article  CAS  Google Scholar 

  7. Guthrie JP (2009) J Phys Chem B 113(14):4501

    Article  CAS  Google Scholar 

  8. Geballe MT, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ (2010) J Comput-Aided Mol Des 24(4, SI):259

    Article  CAS  Google Scholar 

  9. Mobley DL, Bayly CI, Cooper MD, Dill KA (2009) J Phys Chem B 113(14):4533

    Article  CAS  Google Scholar 

  10. Klimovich PV, Mobley DL (2010) J Comput-Aided Mol Des 24(4, Sp. Iss. SI):307

    Article  CAS  Google Scholar 

  11. Moghaddam S, Yang C, Rekharsky M, Ko YH, Kim K, Inoue Y, Gilson MK (2011) J Am Chem Soc 133(10):3570

    Article  CAS  Google Scholar 

  12. Ma D, Zavalij PY, Isaacs L (2010) J Org Chem 75(14):4786

    Article  CAS  Google Scholar 

  13. Merz KM (2010) J Chem Theory Comput 6:1018

    Article  Google Scholar 

  14. Bennett CH (1976) J Comp Phys 22:245

    Article  Google Scholar 

  15. Kirkwood JG (1935) J Chem Phys 3:300

    Article  CAS  Google Scholar 

  16. Bruckner S, Boresch S (2011) J Comp Chem 32(7):1303

    Article  CAS  Google Scholar 

  17. Brooks B, Brooks C III, Mackerell A Jr, Nilsson L, Petrella R, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner A, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor R, Post C, Pu J, Schaefer M, Tidor B, Venable R, Woodcock H, Wu X, Yang W, York D, Karplus M (2009) J Comp Chem 30(10, Sp. Iss. SI):1545

    Article  CAS  Google Scholar 

  18. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187

    Article  CAS  Google Scholar 

  19. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, MacKerell AD Jr (2010) J Comp Chem 31(4):671

    CAS  Google Scholar 

  20. Bruckner S, Boresch S (2011) J Comp Chem 32(7):1320

    Article  CAS  Google Scholar 

  21. Shirts MR, Bair E, Hooker G, Pande VS (2003) Phys Rev Lett 91:140601

    Article  Google Scholar 

  22. Jorgensen WL, Chandrasekhar H, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  23. Neria E, Fischer S, Karplus M (1996) J Chem Phys 105:1902

    Article  CAS  Google Scholar 

  24. Lamoureux G, Roux B (2003) J Chem Phys 119(6):3025

    Article  CAS  Google Scholar 

  25. Hoover WG (1985) Phys Rev A 31:1695

    Article  Google Scholar 

  26. Van Gunsteren WF, Berendsen HJC (1977) Mol Phys 34:1311

    Article  CAS  Google Scholar 

  27. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577

    Article  CAS  Google Scholar 

  28. Lee MS, Feig M, Salsbury FR, Brooks CL III (2003) J Comput Chem 23:1348

    Article  Google Scholar 

  29. König G, Boresch S (2009) J Phys Chem B 113(26):8967

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank R. Pastor, F. Pickard and A. Okur for helpful comments on the manuscript, as well as A. Damjanović and R. Venable for stimulating discussions on the potential protonation states of the host and guest molecules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard König.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

König, G., Brooks, B.R. Predicting binding affinities of host-guest systems in the SAMPL3 blind challenge: the performance of relative free energy calculations. J Comput Aided Mol Des 26, 543–550 (2012). https://doi.org/10.1007/s10822-011-9525-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9525-y

Keywords