Skip to main content
Log in

VSDMIP 1.5: an automated structure- and ligand-based virtual screening platform with a PyMOL graphical user interface

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A graphical user interface (GUI) for our previously published virtual screening (VS) and data management platform VSDMIP (Gil-Redondo et al. J Comput Aided Mol Design, 23:171–184, 2009) that has been developed as a plugin for the popular molecular visualization program PyMOL is presented. In addition, a ligand-based VS module (LBVS) has been implemented that complements the already existing structure-based VS (SBVS) module and can be used in those cases where the receptor’s 3D structure is not known or for pre-filtering purposes. This updated version of VSDMIP is placed in the context of similar available software and its LBVS and SBVS capabilities are tested here on a reduced set of the Directory of Useful Decoys database. Comparison of results from both approaches confirms the trend found in previous studies that LBVS outperforms SBVS. We also show that by combining LBVS and SBVS, and using a cluster of ~100 modern processors, it is possible to perform complete VS studies of several million molecules in less than a month. As the main processes in VSDMIP are 100% scalable, more powerful processors and larger clusters would notably decrease this time span. The plugin is distributed under an academic license upon request from the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Munos B (2009) Nat Rev Drug Discov 8(12):959

    Article  CAS  Google Scholar 

  2. Jorgensen WL (2004) Science 303(5665):1813

    Article  CAS  Google Scholar 

  3. Zhou HX, Gilson MK (2009) Chem Rev 109(9):4092

    Article  CAS  Google Scholar 

  4. Ivanov AS, Veselovsky AV, Dubanov AV, Skvortsov VS (2006) Methods Mol Biol 316:389

    Google Scholar 

  5. Maestro (2011) Maestro, version 9.2. Schrödinger, LLC, New York

  6. SYBYL-X 1.2. (2011) Tripos International, 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA

  7. Schulz T, Pleiss J, Schmid R (2000) Protein Sci 9(6):1053

    Article  CAS  Google Scholar 

  8. Hassan M, Brown RD, Varma-O’brien S, Rogers D (2006) Mol Divers 10(3):283

    Article  CAS  Google Scholar 

  9. DeLano WL (2002) The PyMOL molecular graphics system. Schrodinger Inc, New York

    Google Scholar 

  10. Seeliger D, de Groot BL (2010) J Comput Aided Mol Des 24(5):417

    Article  CAS  Google Scholar 

  11. Lill MA, Danielson ML (2011) J Comput Aided Mol Des 25(1):13

    Article  CAS  Google Scholar 

  12. Irwin JJ, Shoichet BK, Mysinger MM, Huang N, Colizzi F, Wassam P, Cao Y (2009) J Med Chem 52(18):5712

    Article  CAS  Google Scholar 

  13. Beautrait A, Leroux V, Chavent M, Ghemtio L, Devignes MD, Smail-Tabbone M, Cai W, Shao X, Moreau G, Bladon P, Yao J, Maigret B (2008) J Mol Model 14(2):135

    Article  CAS  Google Scholar 

  14. Zhou T, Caflisch A (2009) J Chem Inf Model 49(1):145

    Article  CAS  Google Scholar 

  15. Gil-Redondo R, Estrada J, Morreale A, Herranz F, Sancho J, Ortiz AR (2009) J Comput Aided Mol Des 23(3):171

    Article  CAS  Google Scholar 

  16. Huang N, Shoichet BK, Irwin JJ (2006) J Med Chem 49(23):6789

    Article  CAS  Google Scholar 

  17. Murray CW, Baxter CA, Frenkel AD (1999) J Comput Aided Mol Des 13(6):547

    Article  CAS  Google Scholar 

  18. Schneider G, Neidhart W, Giller T, Schmid G (1999) Angew Chem Int Ed 38(19):2894

    Article  CAS  Google Scholar 

  19. Open Babel: The open source chemistry toolbox; 2011

  20. Weininger D (1988) J Chem Inf Comput Sci 28(1):31

    Article  CAS  Google Scholar 

  21. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) J Comput Chem 26(16):1668

    Article  CAS  Google Scholar 

  22. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  23. Zacharias M, Luty BA, Davis ME, McCammon JA (1994) J Mol Biol 238(3):455

    Article  CAS  Google Scholar 

  24. Pastor M, Cruciani G (1995) J Med Chem 38(23):4637

    Article  CAS  Google Scholar 

  25. Perez C, Ortiz AR (2001) J Med Chem 44(23):3768

    Article  CAS  Google Scholar 

  26. Weininger D (1988) J Chem Inf Model 28(1):31

    Article  CAS  Google Scholar 

  27. Corina. Computerchemie Langemarckplatz 1, Erlangen, Germany: Molecular Networks GmbH; 2000

  28. Stewart JJ (1990) J Comput Aided Mol Des 4(1):1

    Article  Google Scholar 

  29. Gil Redondo R (2006). Master thesis. UNED, Madrid

  30. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) Nucleic Acids Res 32(suppl 2):W665

    Article  CAS  Google Scholar 

  31. Li H, Robertson AD, Jensen JH (2005) Protein Struct Funct Bioinforma 61(4):704

    Article  CAS  Google Scholar 

  32. Triballeau N, Acher F, Brabet I, Pin JP, Bertrand HO (2005) J Med Chem 48(7):2534

    Article  CAS  Google Scholar 

  33. Guha R, Howard MT, Hutchison GR, Murray-Rust P, Rzepa H, Steinbeck C, Wegner J, Egon L, Willighagen O (2006) J chem inf model 46(3):991

    Article  CAS  Google Scholar 

  34. MySQL++. A MySQL API for C++: Tangensoft

  35. Watson P, Verdonk M, Hartshorn MJ (2003) J Mol Graph Model 22(1):71

    Article  CAS  Google Scholar 

  36. Lehtovuori PT, Nyronen TH (2006) J Chem Inf Model 46(2):620

    Article  CAS  Google Scholar 

  37. Preisach C, Burkhardt H, Schmidt-Thieme L, Decker R, Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel B (2008) KNIME The Konstanz information miner. In: Bock HH, Gaul W, Schader M et al (eds) Data analysis. machine learning and applications. Springer, Berlin Heidelberg, p 319

    Google Scholar 

  38. Bak A, Polanski J, Kurczyk A (2009) Molecules 14(9):3436

    Article  CAS  Google Scholar 

  39. Sander T, Freyss J, von Korff M, Reich JR, Rufener C (2009) J Chem Inf Model 49(2):232–246

    Google Scholar 

  40. Brodney MD, Brosius AD, Gregory T, Heck SD, Klug-McLeod JL, Poss CS (2009) J Chem Inf Model 49(12):2639

    Article  CAS  Google Scholar 

  41. Vaque M, Arola A, Aliagas C, Pujadas G (2006) Bioinformatics 22(14):1803

    Article  CAS  Google Scholar 

  42. Zhang S, Kumar K, Jiang X, Wallqvist A, Reifman J (2008) BMC Bioinformatics 9:126

    Article  Google Scholar 

  43. Jiang X, Kumar K, Hu X, Wallqvist A, Reifman J (2008) Chem Cent J 2:18

    Article  Google Scholar 

  44. Prakhov ND, Chernorudskiy AL, Gainullin MR (2010) Bioinformatics 26(10):1374

    Article  CAS  Google Scholar 

  45. Pencheva T, Lagorce D, Pajeva I, Villoutreix BO, Miteva MA (2008) BMC Bioinformatics 9:438

    Article  Google Scholar 

  46. Hsu KC, Chen YF, Lin SR, Yang JM (2011) BMC Bioinformatics 12(Suppl 1):S33

    Article  Google Scholar 

  47. Modest von Korff JF, Sander Thomas (2009) J Chem Inf Model 49(2):209

    Article  Google Scholar 

  48. Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C (2009) J Chem Inf Model 49(6):1455

    Article  CAS  Google Scholar 

  49. Verdonk ML, Berdini V, Hartshorn MJ, Mooij WT, Murray CW, Taylor RD, Watson P (2004) J Chem Inf Comput Sci 44(3):793

    Article  CAS  Google Scholar 

  50. Irwin JJ (2008) J Comput Aided Mol Des 22(3–4):193

    Article  CAS  Google Scholar 

  51. Venkatraman V, Perez-Nueno VI, Mavridis L, Ritchie DW (2010) J Chem Inf Model 50(12):2079

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Eva Mª Priego and Dr. Alberto Gómez for testing the application and valuable comments, as well as the rest of members of the Bioinformatics Unit at CBMSO and the Molecular Modeling group at UAH for encouragement and fruitful discussions. This work was supported by grants from Ministerio de Ciencia e Innovación (MICINN) BIO2008-04384 (to A. M.) and SAF2009-13914-C02-02 (to F. G.), and Comunidad Autónoma de Madrid (CAM) S-BIO-0214-2006. A. M. acknowledges CAM for financial support through the AMAROUTO program to the Fundación Severo Ochoa, R. G. -R. thanks MICINN for a contract from “Programa de Personal Técnico y de Apoyo 2008”, and A. C. thanks Ministerio de Educación for the FPU grant AP2009-0203. We are grateful to OpenEye Scientific Software, Inc. for providing us with an academic license for their software. The technical support and advice from the Bioinformatics Facility at CBMSO is gratefully acknowledged, as well as the computer resources, technical expertise and assistance provided by the Barcelona Supercomputing Center—Centro Nacional de Supercomputación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Morreale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabrera, Á.C., Gil-Redondo, R., Perona, A. et al. VSDMIP 1.5: an automated structure- and ligand-based virtual screening platform with a PyMOL graphical user interface. J Comput Aided Mol Des 25, 813–824 (2011). https://doi.org/10.1007/s10822-011-9465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9465-6

Keywords

Navigation