Abstract
Cheminformatics protocols have been developed and assessed that identify a small set of fragments which can represent the compounds in a chemical library for use in fragment-based ligand discovery. Six different methods have been implemented and tested on Input Libraries of compounds from three suppliers. The resulting Fragment Sets have been characterised on the basis of computed physico-chemical properties and their similarity to the Input Libraries. A method that iteratively identifies fragments with the maximum number of similar compounds in the Input Library (Nearest Neighbours) produces the most diverse library. This approach could increase the success of experimental ligand discovery projects, by providing fragments that can be progressed rapidly to larger compounds through access to available similar compounds (known as SAR by Catalog).
This is a preview of subscription content, access via your institution.



References
Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534
Hajduk PJ (2006) SAR by NMR: putting the pieces together. Mol Interv 6(5):266–272. doi:10.1124/mi.6.5.8
Fischer M, Hubbard RE (2009) Fragment-based ligand discovery. Mol Interv 9(1):22–30. doi:10.1124/mi.9.1.7
Schulz MN, Hubbard RE (2009) Recent progress in fragment-based lead discovery. Curr Opin Pharmacol 9(5):615–621. doi:10.1016/j.coph.2009.04.009
Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51(13):3661–3680. doi:10.1021/jm8000373
Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9(10):430–431. doi:10.1016/S1359-6446(04)03069-7
Lepre CA (2011) Practical aspects of NMR-based fragment screening. Methods Enzymol 493:219–239. doi:10.1016/B978-0-12-381274-2.00009-1
Murray CW, Blundell TL (2010) Structural biology in fragment-based drug design. Curr Opin Struct Biol 20(4):497–507. doi:10.1016/j.sbi.2010.04.003
Giannetti AM (2011) From experimental design to validated hits a comprehensive walk-through of fragment lead identification using surface plasmon resonance. Methods Enzymol 493:169–218. doi:10.1016/B978-0-12-381274-2.00008-X
Kranz JK, Schalk-Hihi C (2011) Protein thermal shifts to identify low molecular weight fragments. Methods Enzymol 493:277–298. doi:10.1016/B978-0-12-381274-2.00011-X
Hubbard RE, Murray JB (2011) Experiences in fragment-based lead discovery. Methods Enzymol 493:509–531. doi:10.1016/B978-0-12-381274-2.00020-0
Erlanson DA (2006) Fragment-based lead discovery: a chemical update. Curr Opin Biotechnol 17(6):643–652. doi:10.1016/j.copbio.2006.10.007
Barker JJ, Barker O, Courtney SM, Gardiner M, Hesterkamp T, Ichihara O, Mather O, Montalbetti CA, Muller A, Varasi M, Whittaker M, Yarnold CJ (2010) Discovery of a novel Hsp90 inhibitor by fragment linking. ChemMedChem 5(10):1697–1700. doi:10.1002/cmdc.201000219
Brough PA, Barril X, Borgognoni J, Chene P, Davies NG, Davis B, Drysdale MJ, Dymock B, Eccles SA, Garcia-Echeverria C, Fromont C, Hayes A, Hubbard RE, Jordan AM, Jensen MR, Massey A, Merrett A, Padfield A, Parsons R, Radimerski T, Raynaud FI, Robertson A, Roughley SD, Schoepfer J, Simmonite H, Sharp SY, Surgenor A, Valenti M, Walls S, Webb P, Wood M, Workman P, Wright L (2009) Combining hit identification strategies: fragment-based and in silico approaches to orally active 2-aminothieno[2,3-d]pyrimidine inhibitors of the Hsp90 molecular chaperone. J Med Chem 52(15):4794–4809. doi:10.1021/jm900357y
Hubbard RE (2008) Fragment approaches in structure-based drug discovery. J Synchrotron Radiat 15(Pt 3):227–230. doi:10.1107/S090904950705666X
Mochalkin I, Miller JR, Narasimhan L, Thanabal V, Erdman P, Cox PB, Prasad JV, Lightle S, Huband MD, Stover CK (2009) Discovery of antibacterial biotin carboxylase inhibitors by virtual screening and fragment-based approaches. ACS Chem Biol 4(6):473–483. doi:10.1021/cb9000102
Davies TG, Woodhead SJ, Collins I (2009) Fragment-based discovery of inhibitors of protein kinase B. Curr Top Med Chem 9(18):1705–1717
Orita M, Ohno K, Warizaya M, Amano Y, Niimi T (2011) Lead generation and examples opinion regarding how to follow up hits. Methods Enzymol 493:383–419. doi:10.1016/B978-0-12-381274-2.00015-7
Brough PA, Aherne W, Barril X, Borgognoni J, Boxall K, Cansfield JE, Cheung KM, Collins I, Davies NG, Drysdale MJ, Dymock B, Eccles SA, Finch H, Fink A, Hayes A, Howes R, Hubbard RE, James K, Jordan AM, Lockie A, Martins V, Massey A, Matthews TP, McDonald E, Northfield CJ, Pearl LH, Prodromou C, Ray S, Raynaud FI, Roughley SD, Sharp SY, Surgenor A, Walmsley DL, Webb P, Wood M, Workman P, Wright L (2008) 4,5-diarylisoxazole Hsp90 chaperone inhibitors: potential therapeutic agents for the treatment of cancer. J Med Chem 51(2):196–218. doi:10.1021/jm701018h
Crisman TJ, Bender A, Milik M, Jenkins JL, Scheiber J, Sukuru SC, Fejzo J, Hommel U, Davies JW, Glick M (2008) “Virtual fragment linking”: an approach to identify potent binders from low affinity fragment hits. J Med Chem 51(8):2481–2491. doi:10.1021/jm701314u
Lau W, Withka J, Hepworth D, Magee T, Du Y, Bakken G, Miller M, Hendsch Z, Thanabal V, Kolodziej S, Xing L, Hu Q, Narasimhan L, Love R, Charlton M, Hughes S, van Hoorn W, Mills J (2011) Design of a multi-purpose fragment screening library using molecular complexity and orthogonal diversity metrics. J Comput Aided Mol Des 1–16. doi:10.1007/s10822-011-9434-0
Baurin N, Aboul-Ela F, Barril X, Davis B, Drysdale M, Dymock B, Finch H, Fromont C, Richardson C, Simmonite H, Hubbard RE (2004) Design and characterization of libraries of molecular fragments for use in NMR screening against protein targets. J Chem Inf Comput Sci 44(6):2157–2166. doi:10.1021/ci049806z
Hubbard RE, Chen I, Davis B (2007) Informatics and modeling challenges in fragment-based drug discovery. Curr Opin Drug Discov Devel 10(3):289–297
Chen IJ, Hubbard RE (2009) Lessons for fragment library design: analysis of output from multiple screening campaigns. J Comput Aided Mol Des. doi:10.1007/s10822-009-9280-5
Blomberg N, Cosgrove D, Kenny P, Kolmodin K (2009) Design of compound libraries for fragment screening. J Comput Aided Mol Des 23(8):513–525. doi:10.1007/s10822-009-9264-5
Gianti E, Sartori L (2008) Identification and selection of “privileged fragments” suitable for primary screening. J Chem Inf Model 48(11):2129–2139. doi:10.1021/ci800219h
Venhorst J, Núñez S, Kruse CG (2010) Design of a high fragment efficiency library by molecular graph theory. ACS Med Chem Lett 1(9):499–503. doi:10.1021/ml100163s
Tounge BA, Parker MH (2011) Designing a diverse high-quality library for crystallography-based FBDD screening. Methods Enzymol 493:3–20. doi:10.1016/B978-0-12-381274-2.00001-7
Prakesch M, Denisov AY, Naim M, Gehring K, Arya P (2008) The discovery of small molecule chemical probes of Bcl-X(L) and Mcl-1. Bioorg Med Chem 16(15):7443–7449. doi:10.1016/j.bmc.2008.06.023
Dalvit C, Mongelli N, Papeo G, Giordano P, Veronesi M, Moskau D, Kummerle R (2005) Sensitivity improvement in 19F NMR-based screening experiments: theoretical considerations and experimental applications. J Am Chem Soc 127(38):13380–13385. doi:10.1021/ja0542385
Blaney J, Nienaber V, Burley SK (2006) Fragment-based lead discovery and optimization using X-ray crystallography, computational chemistry and high-throughput organic synthesis. In: Jahnke W, Erlanson DA (eds) Fragment-based approaches in drug discovery, Wiley, Weinheim, Germany
Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182. doi:10.1021/ci049714+
Tversky A (1977) Features of similarity. Psychol Rev 84(4):327–352. doi:10.1037/0033-295x.84.4.327
Acknowledgments
We thank Accelrys for providing access to software and Eddy Van de Water of Accelrys for specific technical support. We are grateful to Hans Briem and Judith Günther from Bayer and Steve Roughley and James Davidson of Vernalis for helpful discussions. The work was supported by a grant from the Biotechnology and Biological Sciences Research Council, JL by a fellowship from the Swedish Pharmaceutical Society and MNS was partially supported by the Wild fund.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Schulz, M.N., Landström, J., Bright, K. et al. Design of a Fragment Library that maximally represents available chemical space. J Comput Aided Mol Des 25, 611–620 (2011). https://doi.org/10.1007/s10822-011-9461-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-011-9461-x
Keywords
- Fragment-based ligand discovery
- Library design
- SAR by catalog
- Nearest neighbours