Skip to main content

Advertisement

Log in

Quantitative structure–activity relationship analysis of β-amyloid aggregation inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Inhibiting the aggregation process of the β-amyloid peptide is a promising strategy in treating Alzheimer’s disease. In this work, we have collected a dataset of 80 small molecules with known inhibition levels and utilized them to develop two comprehensive quantitative structure–activity relationship models: a Bayesian model and a decision tree model. These models have exhibited high predictive accuracy: 87% of the training and test sets using the Bayesian model and 89 and 93% of the training and test sets, respectively, by the decision tree model. Subsequently these models were used to predict the activities of several new potential β-amyloid aggregation inhibitors and these predictions were indeed validated by in vitro experiments. Key chemical features correlated with the inhibition ability were identified. These include the electro-topological state of carbonyl groups, AlogP and the number of hydrogen bond donor groups. The results demonstrate the feasibility of the developed models as tools for rapid screening, which could help in the design of novel potential drug candidates for Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cohen AS, Calkins E (1959) Electron microscopic observation on a fibrous component in amyloid of diverse origins. Nature 183:1202

    Article  CAS  Google Scholar 

  2. Sunde M, Blake CCF (1998) From the globular to the fibrous state: protein structure and structural conversion in amyloid formation. Q Rev Biophys 31:1–39

    Article  CAS  Google Scholar 

  3. Gazit E (2002) Mechanistic studies of the process of amyloid fibrils formation by the use of peptide fragments and analogues: implications of the design of fibrilization inhibitors. Curr Med Chem 9:1725–1735

    CAS  Google Scholar 

  4. Gandy S (2005) The role of cerebral amyloid β accumulation in common forms of Alzheimer disease. J Clin Invest 115:1121–1129

    CAS  Google Scholar 

  5. Mann D (1989) Cerebral amyloidosis aging and Alzheimer`s disease; a contribution from studies on Down`s syndrome. Neurobiol Aging 10:397–399

    Article  CAS  Google Scholar 

  6. Price D, Tanzi R, Borchelt D, Sisodia S (1998) Alzheimer’s disease: genetic studies and transgenic models. Annu Rev Genet 32:461–493

    Article  CAS  Google Scholar 

  7. Van Leuven F (2000) Single and multiple transgenic mice as models for Alzheimer’s disease. Prog Neurobiol 61:305–312

    Article  Google Scholar 

  8. Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW (1993) Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 13:1676–1687

    CAS  Google Scholar 

  9. Grace EA, Rabiner CA, Busciglio J (2002) Characterization of neuronal dystrophy induced by fibrilar amyloid beta: implications for Alzheimer’s disease. J Neurosci 114:265–273

    Article  CAS  Google Scholar 

  10. Walsh DM, Townsend M, Podlisny MB, Shankar GM, Fadeeva JV, El Agnaf O, Hartley DM, Selkoe DJ (2005) Certain inhibitors of synthetic amyloid-β peptide (Aβ) fibrillogenesis block oligomerization of natural Aβ and thereby rescue long-term potentiation. J Neurosci 25:2455–2462

    Article  CAS  Google Scholar 

  11. Ono K, Condron MM, Teplow DB (2009) Structure-neurotoxicity relationships of amyloid {beta}-protein oligomers. Proc Natl Acad Sci USA 106:14745–14750

    Article  CAS  Google Scholar 

  12. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid beta protein assembly in the brain impairs memory. Nature 16:352–357

    Article  Google Scholar 

  13. Van Marum RJ (2008) Current and future therapy in Alzheimer’s disease. Fundam Clin Pharmacol 22:265–274

    Article  Google Scholar 

  14. Soto C (1999) Plaque busters: strategies to inhibit amyloid formation in Alzheimer’s disease. Mol Med Today 5:343–350

    Article  CAS  Google Scholar 

  15. Rafii MS, Aisen PS (2009) Recent developments in Alzheimer’s disease therapeutics. BMC Med 7:7

    Article  Google Scholar 

  16. Gilead S, Gazit E (2004) Inhibition of amyloid fibril formation by peptide analogues modified with alpha-aminoisobutyric acid. Angew Chem Int Ed Engl 43:4041–4044

    Article  CAS  Google Scholar 

  17. Findeis MA (2000) Approaches to discovery and characterization of inhibitors of amyloid β-peptide polymerization. Biochim Biophys Acta 1502:76–84

    CAS  Google Scholar 

  18. Frydman-Marom A, Rechter M, Shefler I, Bram Y, Shalev DE, Gazit E (2009) Cognitive-performance recovery of Alzheimer’s disease model mice by modulation of early soluble amyloidal assemblies. Angew Chem Int Ed 48:1981–1986

    Article  CAS  Google Scholar 

  19. Ono K, Hasegawa K, Naiki H, Yamada M (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75:742–750

    Article  CAS  Google Scholar 

  20. Riviere C, Richard T, Vitrac X, Merillon JM, Vlls J, Monti JP (2008) New polyphenols active on β-amyloid aggregation. Bioorg Med Chem Lett 18:828–831

    Article  CAS  Google Scholar 

  21. Soto C, Sigurdsson EM, Morelli L, Kumar RA, Castano EM, Frangione B (1998) Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nat Med 4:822–826

    Article  CAS  Google Scholar 

  22. Gazit E (2002) A possible role for π-stacking in self-assembly of amyloid fibrils. FASEB J 16:77–83

    Article  CAS  Google Scholar 

  23. Tjernberg LO, Näslund J, Lindquist F, Iohansson J, Karlström AR, Thyberg J, Terenius L, Nordstedt C (1996) Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J Biol Chem 271:8545–8548

    Article  CAS  Google Scholar 

  24. Howlett DR, Perry AE, Godfrey F, Swatton JE, Jennings KH, Spitzfaden C, Wadsworth H, Wood SJ, Markwell RE (1999) Inhibition of fibril formation in β-amyloid peptide by a novel series of benzofurans. Biochem J 340:283–289

    Article  CAS  Google Scholar 

  25. Cohen T, Frydman-Marom A, Rechter M, Gazit E (2006) Inhibition of amyloid fibril formation and cytotoxicity by hydroxyindole derivatives. Biochemistry 45:4727–4735

    Article  CAS  Google Scholar 

  26. Gazit E (2002) Mechanistic studies of the process of amyloid fibrils formation by the use of peptide fragments and analogues: implications of the design of fibrilization inhibitors. Curr Med Chem 9:1725–1735

    CAS  Google Scholar 

  27. Porat Y, Abramowitz A, Gazit E (2006) Inhibiton of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibiton mechanism. Chem Biol Drug Des 67:7–37

    Google Scholar 

  28. Levy M, Porat Y, Bacharach E, Shalev DE, Gazit E (2008) Phenolsulfonphthalein, but not phenolphthalein, inhibits amyloid fibril formation: implications for the modulation of amyloid self-assembly. Biochemistry 47:5896–5904

    Article  CAS  Google Scholar 

  29. Simons JL, Caprathea BW, Callahana M, Grahama JM, Kimurab T, Laia Y, LeVine H, Lipinskia IW, Sakkaba AT, Tasakib Y, Walkera LC, Yasunagab T, Yea Y, Zhuanga N, Augelli-Szafran CE (2009) The synthesis and structure–activity relationship of substituted N-phenyl anthranilic acid analogs as amyloid aggregation inhibitors. Bioorg Med Chem Lett 19:654–657

    Article  CAS  Google Scholar 

  30. Reinke AA, Gestwicki JE (2007) Structure–activity relationships of amyloid beta-aggregation inhibitors based on curcumin: influence of linker length and flexibility. Chem Biol Drug Des 70:206–215

    Article  CAS  Google Scholar 

  31. Discovery Studio, Accelrys, Inc. http://www.accelrys.com/dstudio/

  32. http://www.cs.waikato.ac.nz/ml/weka

  33. Feller W (1950) An introduction to probability theory and its applications, vol 1. Wiley, New York

    Google Scholar 

  34. Xia X, Maliski EG, Gallant P, Rogers D (2004) Classification of kinase inhibitors using a Bayesian Model. J Med Chem 47:4463–4470

    Article  CAS  Google Scholar 

  35. Quinlan RJ (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Mateo

    Google Scholar 

  36. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874

    Article  Google Scholar 

  37. Rucker C, Rucker G, Meringer MY (2007) Randomization and its variants in QSPR/QSAR. J Chem Inf Model 47:2345–2357

    Article  Google Scholar 

  38. Irwin JJ, Shoichet BK (2005) ZINC—A free database of commercially available compounds for virtual screening (http://zinc.docking.org). J Chem Inf Model 45:177–182

    Google Scholar 

  39. Allen FH (2002) The cambridge structural database: a quarter of a million crystal structures and rising. Acta Cryst B 58:380–388

    Article  Google Scholar 

  40. Akaishi T, Morimotoa T, Shibaoa M, Watanabea S, Sakai-Katob K, Utsunomiya-Tateb N, Abe K (2008) Structural requirements for the flavonoid fisetin in inhibiting fibril formation of amyloid β protein. Neurosci Lett 444:280–285

    Article  CAS  Google Scholar 

  41. Lashuel HA, Hartley DM, Balakhaneh D, Aggarwal A, Teichberg S, Callaway DJ (2002) New class of inhibitors of amyloid-beta fibril formation. Implications for the mechanism of pathogenesis in Alzheimer’s disease. J Biol Chem 277:42881–44290

    Article  CAS  Google Scholar 

  42. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    Article  CAS  Google Scholar 

  43. Riviere C, Richard T, Quentin L, Krisa S, Merillon JM, Mont JP (2007) Inhibitory activity of stilbenes on Alzheimer’s b-amyloid fibrils in vitro. Bioorg Med Chem 15:1160–1167

    Article  CAS  Google Scholar 

  44. Hall LH, Mohney B, Kier LB (1991) The electrotopological state: structure information at the atomic level for molecular graphs. J Chem Inf Comput Sci 31:76–82

    CAS  Google Scholar 

  45. Hall LH, Kier LB (2000) The E-state as the basis for molecular structure space definition and structure similarity. J Chem Inf Comput Sci 40:784–791

    CAS  Google Scholar 

  46. Convertino M, Pellarin R, Catto M, Carotti A, Caflish A (2009) 9, 10-anthraquinone hinders β-aggregation: how does a small molecule interfere with Aβ -peptide amyloid fibrillation? Protein Sci 18:792–800

    CAS  Google Scholar 

  47. Morshedi D, Rezaei-Ghaleh N, Ebrahim-Habibi A, Ahmadian S, Nemat-Gorgani M (2007) Inhibition of amyloid fibrillation of lysozyme by indole derivatives—possible mechanism of action. FEBS J 274:6415–6425

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Nir Ben-Tal and members of his laboratory for helpful discussions regarding the models and members of the Gazit laboratory for helpful discussions. The authors acknowledge the support of the DIP German-Israel Cooperation Program and the support of MERZ cooperation for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ehud Gazit or Hanoch Senderowitz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 218 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stempler, S., Levy-Sakin, M., Frydman-Marom, A. et al. Quantitative structure–activity relationship analysis of β-amyloid aggregation inhibitors. J Comput Aided Mol Des 25, 135–144 (2011). https://doi.org/10.1007/s10822-010-9405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9405-x

Keywords

Navigation