Skip to main content
Log in

The SAMPL2 blind prediction challenge: introduction and overview

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The interactions between a molecule and the aqueous environment underpin any process that occurs in solution, from simple chemical reactions to protein–ligand binding to protein aggregation. Fundamental measures of the interaction between molecule and aqueous phase, such as the transfer energy between gas phase and water or the energetic difference between two tautomers of a molecule in solution, remain nontrivial to predict accurately using current computational methods. SAMPL2 represents the third annual blind prediction of transfer energies, and the first time tautomer ratios were included in the challenge. Over 60 sets of predictions were submitted, and each participant also attempted to estimate the error in their predictions, a task that proved difficult for most. The results of this blind assessment of the state of the field for transfer energy and tautomer ratio prediction both indicate where the field is performing well and point out flaws in current methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, Berlin

    Google Scholar 

  2. Bordner A, Cavasotto C, Abagyan R, Phys J (2002) Chem. B 106:11009–11015

    CAS  Google Scholar 

  3. Cramer C, Truhlar D (2008) Acc Chem Res 41:760–768

    Article  CAS  Google Scholar 

  4. Klamt A, Mennucci B, Tomasi J, Barone V, Curutchet C, Orozco M, Luque F (2009) Acc Chem Res 42:489–492

    Article  CAS  Google Scholar 

  5. Cramer C, Truhlar D (2009) Acc Chem Res 42:493–497

    Article  CAS  Google Scholar 

  6. Guthrie J (2009) J Phys Chem B 113:4501–4507

    Article  CAS  Google Scholar 

  7. Nicholls A, Wlodek S, Grant J (2009) J Phys Chem B 113:4521–4532

    Article  CAS  Google Scholar 

  8. Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG (2010) J Comput Aided Mol Des 24. doi:10.1007/s10822-010-9333-9

  9. Avdeef A (2007) Adv Drug Deliv Rev 59:568–590

    Article  CAS  Google Scholar 

  10. Cesaro A, Russo E, Crescenzi V (1976) J Phys Chem 80:335–339

    Article  CAS  Google Scholar 

  11. Hopfinger AJ, Esposito EX, Llinàs A, Glen RC, Goodman JM (2009) J Chem Inf Model 49:1–5

    Article  CAS  Google Scholar 

  12. Bardi G, Bencivenni L, Ferro D, Martini B, Cesaro SN, Teghil R (1980) Thermochimica Acta 40:275–282

    Article  CAS  Google Scholar 

  13. Kozyro AA, KABO GY, Soldatova TV, Simirskii VV, GOGOLINSKII V, Krasulin AP, Dudarevich NM (1992) Russ J Phys Chem 66:1374–1377

    Google Scholar 

  14. De Wit HGM, Van Miltenburg JC, De Kruif CG (1983) J Chem Thermodyn 15:651–663

    Article  Google Scholar 

  15. Reid RC, Prausnitz JM, Poling BE (1987) The properties of gases and liquids. MacGraw-Hill, New York, p 256

    Google Scholar 

  16. Emel’yanenko VN, Verevkin SP (2008) J Chem Thermodyn 40:1661–1665

    Article  CAS  Google Scholar 

  17. Guthrie JP (1976) Can J Chem 54:202–209

    Article  CAS  Google Scholar 

  18. Guthrie JP (1986) Can J Chem 64:635–640

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC et al (2003) Gaussian 03, Revision B. 04, Gaussian, Inc., Pittsburgh

  20. Bergström CAS, Norinder U, Luthman K, Artursson P (2002) Pharm Res 19:182–188

    Article  Google Scholar 

  21. Perlovich G, Kurkov S, Kinchin A, Bauer-Brandl A (2004) AAPS J 6:22–30

    Google Scholar 

  22. Szterner P (2008) J Chem Eng Data 53:1738–1744

    Article  CAS  Google Scholar 

  23. Szterner P, Kaminski M, Zielenkiewicz A (2002) J Chem Thermodyn 34:1005–1012

    Article  CAS  Google Scholar 

  24. Allexander KS, Laprade B, Mauger JW, Paruta AN (1978) J Pharm Sci 67:624–627

    Article  Google Scholar 

  25. Perlovich GL, Rodionov SV, Bauer-Br A (2005) Eur J Pharm Sci 24:25–33

    Article  CAS  Google Scholar 

  26. Boller A, Wiedemann HG (1998) J Therm Anal Calorim 53:431–439

    Article  CAS  Google Scholar 

  27. Kaminski M, Zielenkiewicz W (1985) Calorim Anal Therm 16:281

    CAS  Google Scholar 

  28. Belaj F, Tripolt R, Nachbaur E (1990) Monatshefte Für Chemie/Chem Mon 121:99–108

    Article  CAS  Google Scholar 

  29. Goldberg RN, Tewari YB (1989) J Phys Chem Ref Data 18:809

    Article  CAS  Google Scholar 

  30. Oja V, Suuberg EM (1999) J Chem Eng Data 44:26–29

    Article  CAS  Google Scholar 

  31. Perlovich GL, Kurkov SV, Bauer-Brandl A (2006) Eur J Pharm Sci 27:150–157

    Article  CAS  Google Scholar 

  32. Perlovich GL, Kurkov SV, Bauer-Brandl A (2003) Eur J Pharm Sci 19:423–432

    Article  CAS  Google Scholar 

  33. Avdeef A, Berger CM, Brownell C (2000) Pharm Res 17:85–89

    Article  CAS  Google Scholar 

  34. To EC, Davies JV, Tucker M, Westh P, Trandum C, Suh KS, Koga Y (1999) J Solution Chem 28:1137–1157

    Article  CAS  Google Scholar 

  35. Ross GR, Heideger WJ (1962) J Chem Eng Data 7:505–507

    Article  CAS  Google Scholar 

  36. Cammenga HK, Schulze FW, Theuerl W (1977) J Chem Eng Data 22:131–134

    Article  CAS  Google Scholar 

  37. Filosofo I, Merlin M, Rostagni A, Nuovo Cimento II (1943–1954) 7 (1950) 69–75

  38. Tang IN, Munkelwitz HR (1991) J Colloid Interf Sci 141:109–118

    Article  CAS  Google Scholar 

  39. Miller MM, Ghodbane S, Wasik SP, Tewari YB, Martire DE (1984) J Chem Eng Data 29:184–190

    Article  CAS  Google Scholar 

  40. Ruelle P, Kesselring UW (1997) Chemosphere 34:275–298

    Article  CAS  Google Scholar 

  41. Shiu WY, Wania F, Hung H, Mackay D (1997) J Chem Eng data (print) 42:293–297

    Article  CAS  Google Scholar 

  42. Weil L, Dure G, Quentin KE (1974) Z Wasser-Abwasser-Forsch. 7:169–175

    CAS  Google Scholar 

  43. Verevkin SP, Emel’yanenko VN, Klamt A (2007) J Chem Eng Data 52:499–510

    Article  CAS  Google Scholar 

  44. Farmer WJ, Yang MS, Letey J, Spencer WF (1980) Soil Sci Soc Am J 44:676–680

    Article  CAS  Google Scholar 

  45. Sears GW, Hopke ER (1949) J Am Chem Soc 71:1632–1634

    Article  CAS  Google Scholar 

  46. Wania F, Shiu WY, Mackay D (1994) J Chem Eng Data 39:572–577

    Article  CAS  Google Scholar 

  47. Altschuh J, Br\üggemann R, Santl H, Eichinger G, Piringer OG (1999) Chemosphere 39:1871–1887

    Article  CAS  Google Scholar 

  48. Atlas E, Velasco A, Sullivan K, Giam CS (1983) Chemosphere (Oxford) 12:1251–1258

    CAS  Google Scholar 

  49. Jantunen LM, Bidleman TF (2006) Chemosphere 62:1689–1696

    Article  CAS  Google Scholar 

  50. Hellmann H (1987) Fresenius Zeitscrift Fuer Analytische Chemie ZACFAU 328:475–479

    Article  CAS  Google Scholar 

  51. Ten Hulscher TE, Van Der Velde LE, Bruggeman WA (1992) Environ Toxicol Chem 11:1595–1603

    Article  CAS  Google Scholar 

  52. Ivin KJ, Dainton FS (1947) Trans Faraday Soc 43:32–35

    Article  CAS  Google Scholar 

  53. Warneck P (2007) Chemosphere 69:347–361

    Article  CAS  Google Scholar 

  54. Ashworth RA, Howe GB, Mullins ME, Rogers TN (1988) J Hazard Mater 18:25–36

    Article  CAS  Google Scholar 

  55. Perlovich GL, Kurkov SV, Hansen LK, Bauer-Brandl A (2004) J Pharm Sci 93:654–666

    Article  CAS  Google Scholar 

  56. Perlovich GL, Kurkov SV, Kinchin AN, Bauer-Brandl A (2003) J Pharm Sci 92:2502–2511

    Article  CAS  Google Scholar 

  57. Perlovich GL, Kurkov SV, Kinchin AN, Bauer-Brandl A (2004) Eur J Pharm Biopharm 57:411–420

    Article  CAS  Google Scholar 

  58. Brisset JL (1985) J Chem Eng Data 30:381–383

    Article  CAS  Google Scholar 

  59. LePree JM, Mulski MJ, Connors KA (1994) J Chem Soc, Perkin Trans 2:1491–1497

    Google Scholar 

  60. Ferro D, Piacente V (1985) Thermochimica Acta 90:387–389

    Article  CAS  Google Scholar 

  61. Majury TG (1956) Chem Ind 349–350

  62. Malaspina L, Gigli R, Bardi G, Maria GD (1973) J Chem Thermodyn 5:699–706

    Article  CAS  Google Scholar 

  63. Sawanoi Y, Shimbo Y, Tabata I, Hisada K, Hori T (2002) Dyes Pigm 52:29–35

    Article  CAS  Google Scholar 

  64. Shimizu T, Ohkubo S, Kimura M, Tabata I, Hori T (1987) J Soc Dyers Colour 103:132–137

    CAS  Google Scholar 

  65. Clever HL (2005) J Phys Chem Ref Data 34:2347–2349

    Article  CAS  Google Scholar 

  66. Scharlin P, Battino R (1994) Fluid Phase Equilibria 95:137–147

    Article  CAS  Google Scholar 

  67. Kawamoto K, Urano K (1989) Chemosphere (Oxford) 19:1223–1231

    CAS  Google Scholar 

  68. Lunden H, Chim J (1907) Physique 5:145–185

    CAS  Google Scholar 

  69. Ribeiro da Silva MA, Santos CP, Monte MJ, Sousa CA (2006) J Therm Anal Calorim 83:533–539

    Article  CAS  Google Scholar 

  70. Benoit RL, Choux G (1968) Can J Chem 46:3215–3219

    Article  CAS  Google Scholar 

  71. Tommila E, Lindell E, Virtalaine M, Laakso R (1969) Suom Kemistil B 42:95

    CAS  Google Scholar 

  72. Steele WV, Chirico RD, Knipmeyer SE, Nguyen A (1997) J Chem Eng Data 42:1008–1020

    Article  CAS  Google Scholar 

  73. Zielenkiewicz W, Szterner P (2004) J Chem Eng Data 49:1197–1200

    Article  CAS  Google Scholar 

  74. Wolfenden R, Williams R (1983) J Am Chem Soc 105:1028–1031

    Article  CAS  Google Scholar 

  75. Herskovits TT, Harrington JP (1972) Biochemistry 11:4800–4811

    Article  CAS  Google Scholar 

  76. Szegezdi J, Csizmadia F (2007) Tautomer generation. pKa based dominance conditions for generating dominant tautomers. In: American Chemical Society Fall National Meeting, ChemAxon Ltd., Budapest

  77. Klimovich PV, Mobley DL (2010) J Comput Aided Mol Des 24. doi:10.1007/s10822-010-9343-7

  78. Klamt A, Diedenhofen M (2010) J Comput Aided Mol Des 24. doi:10.1007/s10822-010-9354-4

  79. Meunier A, Truchon J-F (2010) J Comput Aided Mol Des 24. doi:10.1007/s10822-010-9339-3

  80. Purisima EO, Corbeil CR, Sulea T (2010) J Comput Aided Mol Des 24. doi:10.1007/s10822-010-9341-9

  81. Soteras I, Orozco M, Luque FJ (2010) J Comput Aided Mol Des 24. doi:10.1007/s10822-010-9331-y

  82. Ellingson BA, Skillman AG, Nicholls A (2010) J Comput Aided Mol Des 24. doi:10.1007/s10822-010-9355-3

  83. Nicholls A, Wlodek S, Grant JA (2010) J Comput Aided Mol Des 24. doi:10.1007/s10822-010-9334-8

  84. Kast SM, Heil J, Güssregen S, Schmidt KF (2010) J Comput Aided Mol Des 24. doi:10.1007/s10822-010-9340-x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew T. Geballe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geballe, M.T., Skillman, A.G., Nicholls, A. et al. The SAMPL2 blind prediction challenge: introduction and overview. J Comput Aided Mol Des 24, 259–279 (2010). https://doi.org/10.1007/s10822-010-9350-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9350-8

Keywords

Navigation