Skip to main content
Log in

Computational fragment-based drug design to explore the hydrophobic sub-pocket of the mitotic kinesin Eg5 allosteric binding site

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Eg5, a mitotic kinesin exclusively involved in the formation and function of the mitotic spindle has attracted interest as an anticancer drug target. Eg5 is co-crystallized with several inhibitors bound to its allosteric binding pocket. Each of these occupies a pocket formed by loop 5/helix α2 (L5/α2). Recently designed inhibitors additionally occupy a hydrophobic pocket of this site. The goal of the present study was to explore this hydrophobic pocket with our MED-SuMo fragment-based protocol, and thus discover novel chemical structures that might bind as inhibitors. The MED-SuMo software is able to compare and superimpose similar interaction surfaces upon the whole protein data bank (PDB). In a fragment-based protocol, MED-SuMo retrieves MED-Portions that encode protein-fragment binding sites and are derived from cross-mining protein-ligand structures with libraries of small molecules. Furthermore we have excluded intra-family MED-Portions derived from Eg5 ligands that occupy the hydrophobic pocket and predicted new potential ligands by hybridization that would fill simultaneously both pockets. Some of the latter having original scaffolds and substituents in the hydrophobic pocket are identified in libraries of synthetically accessible molecules by the MED-Search software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SCF:

Surface Chemical Feature

PDB:

Protein Data Bank

KSP:

Kinesin Spindle Protein

HYD:

Hydrophobic

L5/α2:

loop 5/helix α2

Å:

Angström

Du:

MED-Portion dummy atom

ROC:

Receiver Operating Characteristic

References

  1. Mitchison TJ, Salmon ED (2001) Nat Cell Biol 3:E17. doi:10.1038/35050656

    Article  CAS  Google Scholar 

  2. Mitchison T, Kirschner M (1984) Nature 312:237. doi:10.1038/312237a0

    Article  CAS  Google Scholar 

  3. Mitchison TJ (1989) J Cell Biol 109:637. doi:10.1083/jcb.109.2.637

    Article  CAS  Google Scholar 

  4. Vale RD, Fletterick RJ (1997) Annu Rev Cell Dev Biol 13:745. doi:10.1146/annurev.cellbio.13.1.745

    Article  CAS  Google Scholar 

  5. Amos LA, Cross RA (1997) Curr Opin Struct Biol 7:239. doi:10.1016/S0959-440X(97)80032-2

    Article  CAS  Google Scholar 

  6. Wood KW, Cornwell WD, Jackson JR (2001) Curr Opin Pharmacol 1:370. doi:10.1016/S1471-4892(01)00064-9

    Article  CAS  Google Scholar 

  7. Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ (1999) Science 286:971. doi:10.1126/science.286.5441.971

    Article  CAS  Google Scholar 

  8. Kwok BH, Kapoor TM (2007) Curr Opin Cell Biol 19:36. doi:10.1016/j.ceb.2006.12.003

    Article  CAS  Google Scholar 

  9. Turner J, Anderson R, Guo J, Beraud C, Fletterick R, Sakowicz R (2001) J Biol Chem 276:25496. doi:10.1074/jbc.M100395200

    Article  CAS  Google Scholar 

  10. Maliga Z, Kapoor TM, Mitchison TJ (2002) Chem Biol 9:989. doi:10.1016/S1074-5521(02)00212-0

    Article  CAS  Google Scholar 

  11. Yan Y, Sardana V, Xu B, Homnick C, Halczenko W, Buser CA, Schaber M, Hartman GD, Huber HE, Kuo LC (2004) J Mol Biol 335:547. doi:10.1016/j.jmb.2003.10.074

    Article  CAS  Google Scholar 

  12. Cox CD, Breslin MJ, Mariano BJ, Coleman PJ, Buser CA, Walsh ES, Hamilton K, Huber HE, Kohl NE, Torrent M, Yan Y, Kuo LC, Hartman GD (2005) Bioorg Med Chem Lett 15:2041. doi:10.1016/j.bmcl.2005.02.055

    Article  CAS  Google Scholar 

  13. Cox CD, Torrent M, Breslin MJ, Mariano BJ, Whitman DB, Coleman PJ, Buser CA, Walsh ES, Hamilton K, Schaber MD, Lobell RB, Tao W, South VJ, Kohl NE, Yan Y, Kuo LC, Prueksaritanont T, Slaughter DE, Li C, Mahan E, Lu B, Hartman GD (2006) Bioorg Med Chem Lett 16:3175. doi:10.1016/j.bmcl.2006.03.040

    Article  CAS  Google Scholar 

  14. Fraley ME, Steen JT, Brnardic EJ, Arrington KL, Spencer KL, Hanney BA, Kim Y, Hartman GD, Stirdivant SM, Drakas BA, Rickert K, Walsh ES, Hamilton K, Buser CA, Hardwick J, Tao W, Beck SC, Mao X, Lobell RB, Sepp-Lorenzino L, Yan Y, Ikuta M, Munshi SK, Kuo LC, Kreatsoulas C (2006) Bioorg Med Chem Lett 16:6049. doi:10.1016/j.bmcl.2006.08.118

    Article  CAS  Google Scholar 

  15. Tarby CM, Kaltenbach RF3, Huynh T, Pudzianowski A, Shen H, Ortega-Nanos M, Sheriff S, Newitt JA, McDonnell PA, Burford N, Fairchild CR, Vaccaro W, Chen Z, Borzilleri RM, Naglich J, Lombardo LJ, Gottardis M, Trainor GL, Roussell DL (2006) Bioorg Med Chem Lett 16:2095. doi:10.1016/j.bmcl.2006.01.056

    Article  CAS  Google Scholar 

  16. Kim KS, Lu S, Cornelius LA, Lombardo LJ, Borzilleri RM, Schroeder GM, Sheng C, Rovnyak G, Crews D, Schmidt RJ, Williams DK, Bhide RS, Traeger SC, McDonnell PA, Mueller L, Sheriff S, Newitt JA, Pudzianowski AT, Yang Z, Wild R, Lee FY, Batorsky R, Ryder JS, Ortega-Nanos M, Shen H, Gottardis M, Roussell DL (2006) Bioorg Med Chem Lett 16:3937. doi:10.1016/j.bmcl.2006.05.037

    Article  CAS  Google Scholar 

  17. Garcia-Saez I, DeBonis S, Lopez R, Trucco F, Rousseau B, Thuery P, Kozielski F (2007) J Biol Chem 282:9740. doi:10.1074/jbc.M608883200

    Article  CAS  Google Scholar 

  18. Jambon M, Imberty A, Deleage G, Geourjon C (2003) Proteins 52:137. doi:10.1002/prot.10339

    Article  CAS  Google Scholar 

  19. Jambon M, Andrieu O, Combet C, Deleage G, Delfaud F, Geourjon C (2005) Bioinformatics 21:3929. doi:10.1093/bioinformatics/bti645

    Article  CAS  Google Scholar 

  20. Doppelt O, Moriaud F, Bornot A, de Brevern AG (2007) Bioinformation 1:357

    Google Scholar 

  21. Moriaud F, Doppelt-Azeroual O, Martin L et al. (2009) J Chem Inf Model

  22. Doppelt-Azeroual O, Moriaud F, Delfaud F (2009) Infect Disord Drug Targets

  23. The PubChem Project (2008) http://pubchem.ncbi.nlm.nih.gov. Accessed 9 June 2008

  24. Jambon M (2003) A bioinformatic system for searching functional similarities in 3D structures of proteins. Université Claude Bernard Lyon 1, Lyon

    Google Scholar 

  25. Chen X, Lin Y, Liu M, Gilson MK (2002) Bioinformatics 18:130. doi:10.1093/bioinformatics/18.1.130

    Article  CAS  Google Scholar 

  26. http://chembank.broad.harvard.edu/

  27. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) Nucleic Acids Res 35:D198. doi:10.1093/nar/gkl999

    Article  CAS  Google Scholar 

  28. Nicholls A (2008) J Comput Aided Mol Des 22:239–255

    Article  CAS  Google Scholar 

  29. Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel LJ, Freer ST (1995) Chem Biol 2:317. doi:10.1016/1074-5521(95)90050-0

    Article  CAS  Google Scholar 

  30. Czerminski R (2005) Conference presentation, http://www.eyesopen.com/about/events/cup6/

  31. Jenkins JL, Glick M, Davies JW (2004) J Med Chem 47:6144. doi:10.1021/jm049654z

    Article  CAS  Google Scholar 

  32. Bemis GW, Murcko MA (1996) J Med Chem 39:2887. doi:10.1021/jm9602928

    Article  CAS  Google Scholar 

  33. The Open Babel Package (2008) http://openbabel.sourceforge.net/. Accessed 5 July 2008

  34. Accelrys Software Inc.: 10188 Telesis Court, Suite 100 San Diego, CA 92121, USA San Diego

  35. Halgren TA (1999) J Comput Chem 20:720. doi:10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X

    Article  CAS  Google Scholar 

  36. Brooks BR, Bruccoleri RE, Olafson BD et al. (1983) J Comp Chem 187

  37. Gehlhaar DK, Bouzida D, Rejto PA (1992) American Chemical Society: Washington DC 292

  38. Jain AN (1996) J Comput Aided Mol Des 10:427. doi:10.1007/BF00124474

    Article  CAS  Google Scholar 

  39. Krammer A, Kirchhoff PD, Jiang X, Venkatachalam CM, Waldman M (2005) J Mol Graph Model 23:395. doi:10.1016/j.jmgm.2004.11.007

    Article  CAS  Google Scholar 

  40. Muegge I (2006) J Med Chem 49:5895. doi:10.1021/jm050038s

    Article  CAS  Google Scholar 

  41. Muegge I, Martin YC (1999) J Med Chem 42:791. doi:10.1021/jm980536j

    Article  CAS  Google Scholar 

  42. http://tripos.com/mol2/atom_types.html

Download references

Acknowledgments

We thank Raphaël Guerois for providing us useful comments and suggestions for the initiation of this study (Commissariat à l’Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay, and Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, F-91191, France). Olivia Doppelt-Azeroual was funded by the ANRT. This work was supported by the Carriocas collaborative project (http://www.carriocas.org/) and funded by the French office “Direction Générale des Entreprises”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ksenia Oguievetskaia.

Additional information

Ksenia Oguievetskaia and Laetitia Martin-Chanas contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oguievetskaia, K., Martin-Chanas, L., Vorotyntsev, A. et al. Computational fragment-based drug design to explore the hydrophobic sub-pocket of the mitotic kinesin Eg5 allosteric binding site. J Comput Aided Mol Des 23, 571–582 (2009). https://doi.org/10.1007/s10822-009-9286-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-009-9286-z

Keywords

Navigation