Scoring confidence index: statistical evaluation of ligand binding mode predictions

  • Maria I. Zavodszky
  • Andrew W. Stumpff-Kane
  • David J. Lee
  • Michael Feig
Warr's Piece

Abstract

Protein-ligand docking programs can generate a large number of possible binding orientations for each ligand candidate. The challenge is to identify the orientations closest to the native binding mode using a scoring method. Many different scoring functions have been developed for protein-ligand scoring, but their performance on binding mode prediction is often target-dependent. In this study, a statistical approach was employed to provide a confidence measure of scoring performance in finding close to the correct docked ligand orientations. It exploits the fact that the scores provided by an adequately performing scoring function generally improve as the ligand binding modes get closer to the correct native orientation. For such cases, the correlation coefficient of scores versus distances is expected to be highest when the most native-like orientation is used as a reference. This correlation coefficient, called the correlation-based score (CBScore), was used as an indicator of how far the docked pose was from the native orientation. The correlation between the original scores and CBScores as well as the range of CBScores were found to be good measures of scoring performance. They were combined into a single quantity, called the scoring confidence index. High values of the scoring confidence index were indicative of pronounced and relatively smooth binding energy landscapes with easily discernable global minima, resulting in reliable binding mode predictions. Low values of this index reflected rugged energy landscapes making the prediction of the correct binding mode very difficult and often unreliable. The diagnostic ability of the scoring confidence index was tested on a non-redundant set of 50 protein-ligand complexes scored with three commonly employed scoring functions: AffiScore, DrugScore and X-Score. Binding mode predictions were found to be three times more reliable for complexes with scoring confidence indices in the upper half than for cases with values in the lower half of the resulting range of 0–1.6. This new confidence measure of scoring performance is expected to be a valuable tool for virtual screening applications.

Keywords

Binding orientation Correlation-based score Energy landscape Protein-ligand docking Scoring function 

Abbreviations

CBScore

Correlation-based score

PDB

Protein Data Bank

RMSD

Root-mean-square deviation

PSR

Pseudo-RMSD

SCI

Scoring confidence index

Supplementary material

10822_2008_9258_MOESM_ESM.doc (688 kb)
(DOC 687 kb)

References

  1. 1.
    Davies JW, Glick M, Jenkins JL (2006) Curr Opin Chem Biol 10:343. doi:10.1016/j.cbpa.2006.06.022 CrossRefGoogle Scholar
  2. 2.
    Klebe G (2006) Drug Discov Today 11:580. doi:10.1016/j.drudis.2006.05.012 CrossRefGoogle Scholar
  3. 3.
    Leach AR, Shoichet BK, Peishoff CE (2006) J Med Chem 49:5851. doi:10.1021/jm060999m CrossRefGoogle Scholar
  4. 4.
    Stahl M, Rarey M (2001) J Med Chem 44:1035. doi:10.1021/jm0003992 CrossRefGoogle Scholar
  5. 5.
    Chen H, Lyne PD, Giordanetto F, Lovell T, Li J (2006) J Chem Inf Model 46:401. doi:10.1021/ci0503255 CrossRefGoogle Scholar
  6. 6.
    Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) J Med Chem 49:5912. doi:10.1021/jm050362n CrossRefGoogle Scholar
  7. 7.
    Ferrara P, Gohlke H, Price DJ, Klebe G, Brooks CLIII (2004) J Med Chem 47:3032. doi:10.1021/jm030489h CrossRefGoogle Scholar
  8. 8.
    Wang R, Lu Y, Wang S (2003) J Med Chem 46:2287. doi:10.1021/jm0203783 CrossRefGoogle Scholar
  9. 9.
    Wang R, Lu Y, Fang X, Wang S (2004) J Chem Inf Comput Sci 44:2114. doi:10.1021/ci049733j Google Scholar
  10. 10.
    Kontoyianni M, McClellan LM, Sokol GS (2004) J Med Chem 47:558. doi:10.1021/jm0302997 CrossRefGoogle Scholar
  11. 11.
    Perola E, Walters WP, Charifson PS (2004) Proteins 56:235. doi:10.1002/prot.20088 CrossRefGoogle Scholar
  12. 12.
    Schulz-Gasch T, Stahl M (2004) Drug Discov Today Technol 1:231CrossRefGoogle Scholar
  13. 13.
    Stumpff-Kane AW, Feig M (2006) Proteins 63:155. doi:10.1002/prot.20853 CrossRefGoogle Scholar
  14. 14.
    Tsai CJ, Kumar S, Ma B, Nussinov R (1999) Protein Sci 8:1181CrossRefGoogle Scholar
  15. 15.
    Roche O, Kiyama R, Brooks CLIII (2001) J Med Chem 44:3592. doi:10.1021/jm000467k CrossRefGoogle Scholar
  16. 16.
    Wang R, Lai L, Wang S (2002) J Comput Aided Mol Des 16:11. doi:10.1023/A:1016357811882 CrossRefGoogle Scholar
  17. 17.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235. doi:10.1093/nar/28.1.235 CrossRefGoogle Scholar
  18. 18.
    Schnecke V, Kuhn LA (2000) Perspect Drug Discov Des 20:171. doi:10.1023/A:1008737207775 CrossRefGoogle Scholar
  19. 19.
    Zavodszky MI, Kuhn LA (2005) Protein Sci 14:1104. doi:10.1110/ps.041153605 CrossRefGoogle Scholar
  20. 20.
    Zavodszky MI, Sanschagrin PC, Korde RS, Kuhn LA (2002) J Comput Aided Mol Des 16:883. doi:10.1023/A:1023866311551 CrossRefGoogle Scholar
  21. 21.
    Gohlke H, Hendlich M, Klebe G (2000) J Mol Biol 295:337. doi:10.1006/jmbi.1999.3371 CrossRefGoogle Scholar
  22. 22.
    Gohlke H, Klebe G (2002) J Med Chem 45:4153. doi:10.1021/jm020808p CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Maria I. Zavodszky
    • 1
    • 2
  • Andrew W. Stumpff-Kane
    • 1
  • David J. Lee
    • 3
  • Michael Feig
    • 1
    • 2
    • 4
  1. 1.Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUSA
  2. 2.Quantitative Biology InitiativeMichigan State UniversityEast LansingUSA
  3. 3.Lyman Briggs CollegeMichigan State UniversityEast LansingUSA
  4. 4.Department of ChemistryMichigan State UniversityEast LansingUSA

Personalised recommendations