Skip to main content

Improving database enrichment through ensemble docking


While it may seem intuitive that using an ensemble of multiple conformations of a receptor in structure-based virtual screening experiments would necessarily yield improved enrichment of actives relative to using just a single receptor, it turns out that at least in the p38 MAP kinase model system studied here, a very large majority of all possible ensembles do not yield improved enrichment of actives. However, there are combinations of receptor structures that do lead to improved enrichment results. We present here a method to select the ensembles that produce the best enrichments that does not rely on knowledge of active compounds or sophisticated analyses of the 3D receptor structures. In the system studied here, the small fraction of ensembles of up to 3 receptors that do yield good enrichments of actives were identified by selecting ensembles that have the best mean GlideScore for the top 1% of the docked ligands in a database screen of actives and drug-like “decoy” ligands. Ensembles of two receptors identified using this mean GlideScore metric generally outperform single receptors, while ensembles of three receptors identified using this metric consistently give optimal enrichment factors in which, for example, 40% of the known actives outrank all the other ligands in the database.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Leach AR, Shoichet BK (2006) J Med Chem 49:5851

    Article  CAS  Google Scholar 

  2. Perola E, Walters WP, Charifson PS (2004) Proteins 56:235

    Article  CAS  Google Scholar 

  3. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) J Med Chem 47:1739

    Article  CAS  Google Scholar 

  4. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) J Med Chem 47:1750

    Article  CAS  Google Scholar 

  5. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) J Med Chem 49:6177

    Article  CAS  Google Scholar 

  6. Zhou Z, Felts AK, Friesner RA, Levy RM (2007) J Chem Inf Model 47:1599

    Article  CAS  Google Scholar 

  7. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) J Mol Biol 112:535

    Article  CAS  Google Scholar 

  8. Sutherland JJ, Nandigam RK, Erickson JA, Vieth M (2007) Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy. J Chem Inf Model

  9. Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) J Med Chem 49:534

    Article  CAS  Google Scholar 

  10. Bastard K, Prevost C, Zacharias M (2006) Proteins 62:956

    Article  CAS  Google Scholar 

  11. Cavasotto CN, Kovacs JA, Abagyan RA (2005) J Am Chem Soc 127:9632

    Article  CAS  Google Scholar 

  12. Schnecke V, Swanson CA, Getzoff ED, Tainer JA, Kuhn LA (1998) Proteins 33:74

    Article  CAS  Google Scholar 

  13. Zavodszky MI, Lei M, Thorpe MF, Day AR, Kuhn LA (2004) Proteins 57:243

    Article  CAS  Google Scholar 

  14. Alberts IL, Todorov NP, Dean PM (2005) J Med Chem 48:6585

    Article  CAS  Google Scholar 

  15. Limongelli V, Marinelli L, Cosconati S, Braun HA, Schmidt B, Novellino E (2007) ChemMedChem 2:667

    Article  CAS  Google Scholar 

  16. Huang SY, Zou X (2007) Proteins 66:399

    Article  CAS  Google Scholar 

  17. Claussen H, Buning C, Rarey M, Lengauer T (2001) J Mol Biol 308:377

    Article  CAS  Google Scholar 

  18. Lorber DM, Shoichet BK (1998) Protein Sci 7:938

    Article  CAS  Google Scholar 

  19. Polgar T, Keseru GM (2006) J Chem Inf Model 46:1795

    Article  CAS  Google Scholar 

  20. Only CA atoms are available in the PDB, however, one of the authors of the 1IAN structure (Liang Tong) generously provided us with a refined, all-atom model

  21. Maestro v8.0, Schrödinger, Inc.: Portland, OR

  22. Pargellis C, Tong L, Churchill L, Cirillo PF, Gilmore T, Graham AG, Grob PM, Hickey ER, Moss N, Pav S, Regan J (2002) Nat Struct Biol 9:268

    Article  CAS  Google Scholar 

  23. Epik v1.5, Schrödinger, Inc.: Portland, OR

  24. The 1000 drug-like set of decoy ligands is available for download from the Schrödinger website

  25. LigPrep v2.1, Schrödinger, Inc.: Portland, OR

  26. Glide v4.5, Schrödinger, Inc.: Portland, OR

  27. Frembgen-Kesner T, Elcock AH (2006) J Mol Biol 359:202

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ramy Farid.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rao, S., Sanschagrin, P.C., Greenwood, J.R. et al. Improving database enrichment through ensemble docking. J Comput Aided Mol Des 22, 621–627 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Enrichment
  • Ensemble docking
  • Virtual screening
  • p38 MAP kinase
  • Glide