Abstract
As an extension to a previous published study (McGaughey et al., J Chem Inf Model 47:1504–1519, 2007) comparing 2D and 3D similarity methods to docking, we apply a subset of those virtual screening methods (TOPOSIM, SQW, ROCS-color, and Glide) to a set of protein/ligand pairs where the protein is the target for docking and the cocrystallized ligand is the target for the similarity methods. Each protein is represented by a maximum of five crystal structures. We search a diverse subset of the MDDR as well as a diverse small subset of the MCIDB, Merck’s proprietary database. It is seen that the relative effectiveness of virtual screening methods, as measured by the enrichment factor, is highly dependent on the particular crystal structure or ligand, and on the database being searched. 2D similarity methods appear very good for the MDDR, but poor for the MCIDB. However, ROCS-color (a 3D similarity method) does well for both databases.
This is a preview of subscription content, access via your institution.






References
McGaughey GB, Sheridan RP, Bayly CI, Culberson JC, Kreatsoulas CK, Lindsley S, Maiorov V, Truchon J-F, Cornell WD (2007) Comparison of topological, shape, and docking methods in virtual screening. J Chem Inf Model 47:1504–1519
Carhart RE, Smith DH, Venkataraghavan R (1985) Atom pairs as molecular features in structure-activity studies: definition and applications. J Chem Inf Comput Sci 25:64–73
MDL Drug Data Report licensed by Molecular Design Ltd., San Leandro, CA. http://www.mdli.com
McGann MR, Almond HR, Nicholls A, Grant JA, Brown FK (2003) Gaussian docking functions. Biopolymers 68:76–90
Hawkins PCD (2006) A comparison of structure-based and shape-based tools for virtual screening. Abstracts of Papers, 231st ACS National Meeting, Atlanta, GA, United States, March 26–30, 2006
Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759
Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749
Nilakantan R, Bauman N, Dixon JS, Venkataraghavan R (1987) Topological torsion: a new molecular descriptor for SAR applications. Comparison with other descriptors. J Chem Inf Comput Sci 27:82–85
Kearsley SK, Sallamack S, Fluder EM, Andose JD, Mosley RT, Sheridan RP (1996) Chemical similarity using physiochemical property descriptors. J Chem Inf Comput Sci 36:118–127
Miller MD, Sheridan RP, Kearsley SK (1999) SQ: a program for rapidly producing pharmacophorically relevant molecular superpositions. J Med Chem 42:1505–1514
Edgar SJ, Holliday JD, Willett P (2000) Effectiveness of retrieval in similarity searches of chemical databases: a review of performance measures. J Mol Graph Model 18:343–357
Sheridan RP, Singh SB, Fluder EM, Kearsley SK (2001) Protocols for bridging the peptide to nonpeptide gap in topological similarity searches. J Chem Inf Comput Sci 41:1395–1406
Triballeau N, Archer F, Brabet I, Pin J-P, Bertrand H-O (2005) Virtual screening workflow development guided by the ‘receiver operating characteristic’ curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem 48:2534–2547
Seifert MHJ (2006) Assessing the discriminatory power of scoring functions for virtual screening. J Chem Inf Model 46:1456–1465
Truchon J-F, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics for the early recognition problem. J Chem Inf Model 47:488–508
Sheridan RP Alternative global goodness metrics and sensitivity analysis: heuristics to check the robustness of conclusions from studies comparing virtual screening methods. J Chem Inf Model (in press)
Kairys V, Fernandes MX, Gilson MK (2006) Screening drug-like compounds by docking to homology models: a systematic study. J Chem Inf Model 46:365–379
Erickson JA, Jalaie M, Robertson DH, Lewis RA, Vieth M (2004) Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy. J Med Chem 47:45–55
Andersson CD, Thysell E, Lindstrom A, Bylesjo M, Raubacher F, Linusson A (2007) A multivariate approach to investigate docking parameters’ effects on docking performance. J Chem Inf Model 47:1673–1687
McGovern SL, Shoichet BK (2003) Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes. J Med Chem 46:2895–2907
Muegge I, Enyedy IJ (2004) Virtual screening for kinase targets. Curr Med Chem 11:693–707
Acknowledgement
The authors thank Christopher Bayly for useful discussions.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Sheridan, R.P., McGaughey, G.B. & Cornell, W.D. Multiple protein structures and multiple ligands: effects on the apparent goodness of virtual screening results. J Comput Aided Mol Des 22, 257–265 (2008). https://doi.org/10.1007/s10822-008-9168-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-008-9168-9
Keywords
- 2D similarity
- 3D similarity
- Docking
- BEDROC
- ROC
- Glide
- ROCS
- SQ
- SQW
- TOPOSIM