Skip to main content
Log in

Evaluation of machine-learning methods for ligand-based virtual screening

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Machine-learning methods can be used for virtual screening by analysing the structural characteristics of molecules of known (in)activity, and we here discuss the use of kernel discrimination and naive Bayesian classifier (NBC) methods for this purpose. We report a kernel method that allows the processing of molecules represented by binary, integer and real-valued descriptors, and show that it is little different in screening performance from a previously described kernel that had been developed specifically for the analysis of binary fingerprint representations of molecular structure. We then evaluate the performance of an NBC when the training-set contains only a very few active molecules. In such cases, a simpler approach based on group fusion would appear to provide superior screening performance, especially when structurally heterogeneous datasets are to be processed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Böhm H-J, Schneider G (eds) (2000) Virtual screening for bioactive molecules, Wiley-VCH, New York

  2. Klebe G (ed) (2000) Virtual screening: an alternative or complement to high throughput screening, Kluwer, Dordrecht

  3. Bajorath J (2002) Nature Rev Drug Discov 1:882

    Article  CAS  Google Scholar 

  4. Delaney J, Clarke E, Hughes D, Rice M (2006) Drug Discov Today 11:839

    Article  Google Scholar 

  5. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Nature Rev Drug Discov 3:935

    Article  CAS  Google Scholar 

  6. Leach AR, Shoichet BK, Peishoff CE (2006) J Med Chem 49:5851

    Article  CAS  Google Scholar 

  7. Schneider G, Fechner U (2005) Nature Rev Drug Discov 4:649

    Article  CAS  Google Scholar 

  8. Berman HM, Battistuz T, Bhat TN, Blum WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) Acta Cryst D 58:899

    Article  Google Scholar 

  9. Congreve M, Murray CW, Blundell TL (2005) Drug Discov Today 10:895

    Article  CAS  Google Scholar 

  10. Willett P (1987) Similarity and clustering in chemical information systems. Research Studies Press, Letchworth

    Google Scholar 

  11. Sheridan RP, Kearsley SK (2002) Drug Discov Today 7:903

    Article  Google Scholar 

  12. Bender A, Glen RC (2004) Org Biomol Chem 2:3204

    Article  CAS  Google Scholar 

  13. Martin YC, In: Martin YC, Willett P (eds) (1998) Designing bioactive molecules: three-dimensional techniques and applications. American Chemical Society, Washington, pp 121–148

  14. Güner O (ed) (2000) Pharmacophore perception, development and use in drug design. International University Line, La Jolla CA

  15. Martin YC (1992) J Med Chem 35:2145

    Article  CAS  Google Scholar 

  16. Willett P (1995) J Mol Recognit 8:290

    Article  CAS  Google Scholar 

  17. Mitchell TM (1997) Machine learning. McGraw-Hill, New York, NY

    Google Scholar 

  18. Cramer RD, Redl G, Berkoff CE (1974) J Med Chem 17:533

    Article  CAS  Google Scholar 

  19. Redl G, Cramer RD, Berkoff CE (1974) Chem Soc Rev 3:273

    Article  CAS  Google Scholar 

  20. Duda RO, Hart PE, Stork DG (2000) Pattern classification. 2nd ed., Wiley Interscience, New York

    Google Scholar 

  21. Hand D, Mannila H, Smyth P (2001) Principles of data mining. MIT Press Cambridge MA

    Google Scholar 

  22. Wagener M, van Geerestein VJ (2000) J Chem Inf Comput Sci 40:280

    Article  CAS  Google Scholar 

  23. Saeh JC, Lyne PD, Takasaki BK, Cosgrove DA (2005) J Chem Inf Model 45:1122

    Article  CAS  Google Scholar 

  24. Hawkins DM, Young SS, Rusinko A (1997) Quant Struct-Active Relat 16:296

    Article  CAS  Google Scholar 

  25. Harper G, Bradshaw J, Gittins JC, Green DVS, Leach AR (2001) J Chem Inf Comput Sci 41:1295

    Article  CAS  Google Scholar 

  26. Johnson MA, Maggiora GM (eds) (1990) Concepts and applications of molecular similarity. John Wiley, New York

  27. Kubinyi H (1998) Perspect Drug Discov Design 9–11:225

    Article  Google Scholar 

  28. Stahura FL, Bajorath J (2002) Drug Discov Today 7:S41

    Article  CAS  Google Scholar 

  29. Carhart RE, Smith DH, Venkataraghavan R (1985) J Chem Inf Comput Sci 25:64

    Article  CAS  Google Scholar 

  30. Willett P, Winterman V, Bawden D (1986) J Chem Inf Comput Sci 26:36

    Article  CAS  Google Scholar 

  31. Willett P, Barnard JM, Downs GM (1998) J Chem Inf Comput Sci 38:983

    Article  CAS  Google Scholar 

  32. Nikolova N, Jaworska J (2003) QSAR Combin Sci 22:1006

    Article  Google Scholar 

  33. Brown RD, Martin YC (1996) J Chem Inf Comput Sci 36:572

    Article  CAS  Google Scholar 

  34. Brown RD, Martin YC (1997) J Chem Inf Comput Sci 37:1

    Article  CAS  Google Scholar 

  35. Martin YC, Kofron JL, Traphagen LM (2002) J Med Chem 45:4350

    Article  CAS  Google Scholar 

  36. Parzen E (1962) Ann Math Stat 33:1065

    Google Scholar 

  37. Christianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge Universtity Press, Cambridge

    Google Scholar 

  38. Wilton D, Willett P, Lawson K, Mullier G (2003) J Chem Inf Comput Sci 43:469

    Article  CAS  Google Scholar 

  39. Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2004) J Chem Inf Comput Sci 44:1177

    Article  CAS  Google Scholar 

  40. Wilton DJ, Harrison RF, Willett P, Delaney J, Lawson K, Mullier G (2006) J Chem Inf Model 46:471

    Article  CAS  Google Scholar 

  41. Chen B, Harrison RF, Pasupa K, Wilton DJ, Willett P, Wood DJ, Lewell XQ (2006) J Chem Inf Model 46:478

    Article  CAS  Google Scholar 

  42. Aitchison J, Aitken CGG (1976) Biometrika 63:413

    Article  Google Scholar 

  43. Constans P, Hirst JD (2000) J Chem Inf Comput Sci 40:452

    Article  CAS  Google Scholar 

  44. McNeany TJ, Hirst JD (2005) J Chem Inf Comput Sci 45:768

    CAS  Google Scholar 

  45. Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2006) J Chem Inf Comput Sci 46:462

    CAS  Google Scholar 

  46. Clark DE (2003) Drug Discov Today 8:927

    Article  CAS  Google Scholar 

  47. Hodes L, Hazard GF, Geran RI, Richman S (1977) J Med Chem 20:469

    Article  CAS  Google Scholar 

  48. Hodes L (1981) J Chem Inf Comput Sci 21:132

    Article  CAS  Google Scholar 

  49. Hodes L (1981) J Chem Inf Comput Sci 21:128

    Article  CAS  Google Scholar 

  50. Ormerod A, Willett P, Bawden D (1989) Quant Struct-Active Relat 8:115

    Article  CAS  Google Scholar 

  51. Ormerod A, Willett P, Bawden D (1990) Quant Struct-Active Relat 9:302

    Article  CAS  Google Scholar 

  52. Cosgrove DA, Willett P (1998) J Mol Graph Model 16:19

    Article  CAS  Google Scholar 

  53. Anzali S, Barnickel G, Cezanne B, Krug M, Filimonov D, Poroikov V (2001) J Chem Inf Comput Sci 44:2432

    CAS  Google Scholar 

  54. Bender A, Mussa HY, Glen RC, Reiling S (2004) J Chem Inf Comput Sci 44:170

    Article  CAS  Google Scholar 

  55. Bender A, Mussa HY, Glen RC, Reiling S (2004) J Chem Inf Comput Sci 44:1708

    Article  CAS  Google Scholar 

  56. Glick M, Klon AE, Acklin P, Davies JW (2004) J Biomol Screen 9:32

    Article  CAS  Google Scholar 

  57. Klon AE, Glick M, Davies JW (2004) J Med Chem 47:4356

    Article  CAS  Google Scholar 

  58. Xia XY, Maliski EG, Gallant P, Rogers D (2004) J Med Chem 47:4463

    Article  CAS  Google Scholar 

  59. Rogers D, Brown RD, Hahn M (2005) J Biomol Screen 10:682

    Article  CAS  Google Scholar 

  60. Glick M, Jenkins JL, Nettles JH, Hitchings H, Davies JW (2006) J Chem Inf Model 46:193

    Article  CAS  Google Scholar 

  61. Capelli AM, Feriani A, Tedesco G, Pozzan A (2006) J Chem Inf Model 46:659

    Article  CAS  Google Scholar 

  62. Eckert H, Bajorath J (2006) J Med Chem 49:2284

    Article  CAS  Google Scholar 

  63. Domingos P, Pazzani M (1997) Machine Learn 29:103

    Article  Google Scholar 

  64. Hand DJ, Yu K (2001) Int Stat Rev 69:385

    Google Scholar 

  65. Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2004) Org Biomol Chem 2:3256

    Article  CAS  Google Scholar 

  66. Whittle M, Gillet VJ, Willett P, Alex A, Loesel J (2004) J Chem Inf Comput Sci 44:1840

    Article  CAS  Google Scholar 

  67. Zhang Q, Muegge I (2006) J Med Chem 49:1536

    Article  CAS  Google Scholar 

  68. Williams C (2006) Mol Divers 10:311

    Article  CAS  Google Scholar 

  69. Willett P (2006) QSAR Combin Sci 25:1143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following: the Alexander S. Onassis Public Benefit Foundation, the Engineering and Physical Sciences Research Council and the Novartis Institutes for Biomedical Research for funding George Papadatos; the Biotechnology and Biological Sciences Research Council and GlaxoSmithKline for funding David Wood; MDL Information Systems Inc. for provision of the MDL Drug Data Report database; and the Royal Society, SciTegic Inc., Tripos Inc. and the Wolfson Foundation for hardware, laboratory and software support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Willett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Harrison, R.F., Papadatos, G. et al. Evaluation of machine-learning methods for ligand-based virtual screening. J Comput Aided Mol Des 21, 53–62 (2007). https://doi.org/10.1007/s10822-006-9096-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9096-5

Keywords

Navigation