Genetic neural network modeling of the selective inhibition of the intermediate-conductance Ca2+-activated K+ channel by some triarylmethanes using topological charge indexes descriptors


Selective inhibition of the intermediate-conductance Ca2+-activated K+ channel (IK Ca) by some clotrimazole analogs has been successfully modeled using topological charge indexes (TCI) and genetic neural networks (GNNs). A neural network monitoring scheme evidenced a highly non-linear dependence between the IK Ca blocking activity and TCI descriptors. Suitable subsets of descriptors were selected by means of genetic algorithm. Bayesian regularization was implemented in the network training function with the aim of assuring good generalization qualities to the predictors. GNNs were able to yield a reliable predictor that explained about 97% data variance with good predictive ability. On the contrary, the best multivariate linear equation with descriptors selected by linear genetic search, only explained about 60%. In spite of when using the descriptors from the linear equations to train neural networks yielded higher fitted models, such networks were very unstable and had relative low predictive ability. However, the best GNN BRANN 2 had a Q 2 of LOO of cross-validation equal to 0.901 and at the same time exhibited outstanding stability when calculating 80 randomly constructed training/test sets partitions. Our model suggested that structural fragments of size three and seven have relevant influence on the inhibitory potency of the studied IK Ca channel blockers. Furthermore, inhibitors were well distributed regarding its activity levels in a Kohonen self-organizing map (KSOM) built using the inputs of the best neural network predictor.

This is a preview of subscription content, log in to check access.


  1. 1.

    Gárdos G., (1958) Biophys. Acta. 30: 653

    Article  Google Scholar 

  2. 2.

    Cook, N.S. and Quast, U., In Potassium Channels, Cook, N.S., Chichester, p. 70

  3. 3.

    Haylett, D.G. and Jenkinson, D.H., In Potassium Channels, Cook, N.S., Chichester, 1990, p. 70

  4. 4.

    Castle N.A., (1999) Perspect. Drug Discovery Des. 15: 131

    Article  Google Scholar 

  5. 5.

    Vergara C., LaTorre R., Marrion N.V., Adelman J.P., (1998) Curr. Opin. Neurobiol. 8: 321

    Article  CAS  Google Scholar 

  6. 6.

    Wulff H., Miller M.J., Hänsel W., Grissmer S., Cahalan M.D., Chandy K.G., (2000) Proc. Natl. Acad. Sci. 97: 8151

    Article  CAS  Google Scholar 

  7. 7.

    Roxburgh C.J., Ganellin C.R., Athmani S., Bisi A., Quaglia W., Benton D.C.H., Shiner M.A.R., Malik-Hall M., Haylett D.G., Jenkinson D.H., (2001) J. Med. Chem. 44: 3244

    Article  CAS  Google Scholar 

  8. 8.

    Kubinyi H., 1993.QSAR: Hansch Analysis and Related Approaches, VCH, New York,

    Google Scholar 

  9. 9.

    Gálvez J., Garcia R., Salabert M.T., Soler R., (1994) J. Chem. Inf. Comput. Sci. 34: 520

    Google Scholar 

  10. 10.

    Gálvez J., Garcia-Domenech R., de Julihn-Ortiz J.V., Soler R., (1995) J. Chem. Inf Comput. Sci. 35: 272

    Article  Google Scholar 

  11. 11.

    Kios-Santamarina I., Garcia-Domenech R., Gálvez J., (1998) Bioorg. Med. Chem. Lett. 18: 477

    Article  Google Scholar 

  12. 12.

    Calabuig C., Antón-Fos G.M., Gálvez J., García-Doménech R., (2004) Int. J. Pharm. 278: 111

    Article  CAS  Google Scholar 

  13. 13.

    González M.P., Terán C., (2004) Bull. Math. Biol. 66: 907

    Article  CAS  Google Scholar 

  14. 14.

    González M.P., Terán C., (2004) Bioorg. Med. Chem. Lett. 14: 3077

    Article  CAS  Google Scholar 

  15. 15.

    Fernández M., Caballero J., Helguera A.M., Castro E.A., González M.P., (2005) Bioorg. Med. Chem. 13: 3269

    Article  CAS  Google Scholar 

  16. 16.

    Fernández M., Tundidor-Camba A., Caballero J., (2005) Mol. Simulat. 31: 575

    Article  CAS  Google Scholar 

  17. 17.

    González, M.P., Caballero, J., Garriga, M., González, G., Helguera, A.M. and Fernández, M., Bull. Math. Biol. (2005) (in press)

  18. 18.

    González, M.P., Caballero, J., Tundidor-Camba, A., Helguera, A.M., Fernández, M., Bioorg. Med. Chem. DOI: 10.1016/j.bmc.2005.08.009

  19. 19.

    Fernández, M. and Caballero, J., Bioorg. Med. Chem. DOI: 10.1016/j.bmc.2005.08.022

  20. 20.

    Caballero, J. and Fernández, M., J. Mol. Model. DOI: 10.1007/s00894-005-0014-x

  21. 21.

    So S.S., Karplus M., (1996) J. Med. Chem. 39: 1521

    Article  CAS  Google Scholar 

  22. 22.

    So S.S., Karplus M., (1996) J. Med. Chem. 39: 5246

    Article  CAS  Google Scholar 

  23. 23.

    Hemmateenejad B., Akhond M., Miri R., Shamsipur M., (2003) J. Chem. Inf. Comput. Sci. 43: 1328

    Article  CAS  Google Scholar 

  24. 24.

    Takahata Y., Costa M.C.A., Gaudio A.C., (2003) J. Chem. Inf. Comput. Sci. 43: 540

    Article  CAS  Google Scholar 

  25. 25.

    Hemmateenejad B., Safarpour M.A., Miri R., Nesari N., (2005) J. Chem. Inf. Model. 45: 190

    Article  CAS  Google Scholar 

  26. 26.

    Hawkins D.M., (2004) J. Chem. Inf. Comput. Sci. 44: 44

    Article  CAS  Google Scholar 

  27. 27.

    Kier L.B., Hall L.H., 1999 Molecular Structure Descriptors: The Electrotopological StateAcademic PressNew York

    Google Scholar 

  28. 28.

    Hall L.H., Mohney B., Kier L.B., (1991) J. Chem. Inf. Comput. Sci. 31: 76

    CAS  Google Scholar 

  29. 29.

    Girones X., Amat L., Robert D., Carbo-Dorca R., (2000) J. Comput. Aided Mol. Des. 14: 477

    Article  CAS  Google Scholar 

  30. 30.

    Todeschini, R. and Consonni, V. and Pavan, M., DRAGON. version 2.1 (2003)

  31. 31.

    Holland J.H., 1975. Adaption in Natural and Artificial Systems The University of Michigan Press Ann Arbor, MI

    Google Scholar 

  32. 32.

    Cartwright H.M., 1993. Applications of Artificial Intelligence in Chemistry Oxford University Press Oxford

    Google Scholar 

  33. 33.

    The MathWorks Inc. MATLAB version 7.0. (2004),

  34. 34.

    The MathWorks Inc., 2004. Genetic Algorithm and Direct Search Toolbox User’s Guide for Use with MATLAB The Mathworks Inc. Massachusetts

    Google Scholar 

  35. 35.

    Hertz J., Krogh A., Palmer R.G., 1991. Introduction to the Theory of Neural Computation Addison-Wesley Publishing Co. Redwood City, CA

    Google Scholar 

  36. 36.

    Kolmogorov A.N., (1957) SSSR114: 953

    Google Scholar 

  37. 37.

    The MathWorks Inc., 2004. Neural Network Toolbox User’s Guide for Use with MATLAB The Mathworks Inc. Massachusetts

    Google Scholar 

  38. 38.

    Mackay D.J.C., (1992) Neural Comput 4: 415

    Article  Google Scholar 

  39. 39.

    Burden F.R., Winkler D.A., (1999) J. Med. Chem. 42: 3183

    Article  CAS  Google Scholar 

  40. 40.

    Burden F.R., Winkler D.A., (2000) Chem. Res. Toxicol. 13: 436

    Article  CAS  Google Scholar 

  41. 41.

    Winkler D.A., Burden F.R., (2004) Biosilico 2: 104

    CAS  Google Scholar 

  42. 42.

    Polley M.J., Winkler D.A., Burden F.R., (2004) J. Med. Chem.47:6230

    Article  CAS  Google Scholar 

  43. 43.

    Kohonen T., (1982) Biol. Cybern. 43: 59

    Article  Google Scholar 

  44. 44.

    Gasteiger J., Zupan J., (1995) Angew. Chem. Int. Ed. Engl. 32: 503

    Article  Google Scholar 

  45. 45.

    Golbraikh A., Tropsha A., (2002) J. Mol. Graph. Model. 20: 269

    Article  CAS  Google Scholar 

  46. 46.

    Zahouily M., Bazoui A.R., Sebti S., Zakarya D., (2002) J. Mol. Model. 8: 168

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Michael Fernández.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caballero, J., Garriga, M. & Fernández, M. Genetic neural network modeling of the selective inhibition of the intermediate-conductance Ca2+-activated K+ channel by some triarylmethanes using topological charge indexes descriptors. J Comput Aided Mol Des 19, 771–789 (2005).

Download citation


  • Bayesian regularization
  • clotrimazole
  • genetic algorithm
  • ion channel
  • neural networks
  • QSAR