Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hydrophobic Molecular Similarity from MST Fractional Contributions to the Octanol/water Partition Coefficient

Summary

The use of a recently proposed hydrophobic similarity index for the alignment of molecules and the prediction of their differences in biological activity is described. The hydrophobic similarity index exploits atomic contributions to the octanol/water transfer free energy, which are evaluated by means of the fractional partitioning scheme developed within the framework of the Miertus-Scrocco-Tomasi continuum model. Those contributions are used to define global and local measures of hydrophobic similarity. The suitability of this computational strategy is examined for two series of compounds (ACAT inhibitors and 5-HT3 receptor agonists), which are aligned to maximize the global hydrophobic similarity using a Monte Carlo-simulated protocol. Indeed, the concept of local hydrophobic similarity is used to explore structure–activity relationships in a series of COX-2 inhibitors. Inspection of the 3D distribution of hydrophobic/hydrophilic contributions in the aligned molecules is valuable to identify regions of very similar hydrophobicity, which can define pharmacophoric recognition patterns. Moreover, low similar regions permit to identify structural elements that modulate the differences in activity between molecules. Finally, the quantitative relationships found between the pharmacological activity and the hydrophobic similarity index points out that not only the global hydrophobicity, but its 3D distribution, is important to gain insight into the activity of molecules.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    T. Lengau1er M. Rarey (1996) Curr. Opt. Struct. Biol. 6 402 Occurrence Handle10.1016/S0959-440X(96)80061-3

  2. 2.

    M.A. Johnson G.M. Maggiora (Eds) (1990) Concepts and Applications of Molecular Similarity Wiley New York

  3. 3.

    T.R. Hagadone (1992) J. Chem. Inf. Comput. Sci. 32 515 Occurrence Handle10.1021/ci00009a019

  4. 4.

    S.E. Jakes P. Willett (1986) J. Mol. Graphics 4 12 Occurrence Handle10.1016/0263-7855(86)80088-1

  5. 5.

    J.H. Drie ParticleVan D. Weininger Y.C. Martin (1989) J. Comput.-Aided Mol. Design 3 225 Occurrence Handle10.1007/BF01533070

  6. 6.

    R. Carbó-Dorca D. Robert L. Amat X. Gironés E. Besalú (2000) Lecture Notes in Chemistry NumberInSeries Vol 7 Springer Berlin

  7. 7.

    E.E. Hodgkin W.G. Richards (1987) Int J. Quantum Chem., Quantum Biol. Symp. 14 105

  8. 8.

    G. Klebe T. Mietzner F. Weber (1994) J. Comput.-Aided Mol. Design 8 751 Occurrence Handle10.1007/BF00124019

  9. 9.

    J. Mestres D.C. Rohrer G.M. Maggiora (1997) J. Comput. Chem. 18 934 Occurrence Handle10.1002/(SICI)1096-987X(199705)18:7<934::AID-JCC6>3.0.CO;2-S

  10. 10.

    Cramer , R.D., III, Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

  11. 11.

    K. Palm K. Luthman A.L. Ungell G. Strandlund F. Begi P. Lundahl P. Artursson (1998) J. Med. Chem. 41 5–382 Occurrence Handle10.1021/jm980313t

  12. 12.

    A. Kantola H.O. Villar G.H. Loew (1991) J. Comput. Chem. 12 681 Occurrence Handle10.1002/jcc.540120605

  13. 13.

    R.C. Wade K.J. Clark P.J. Goodford (1993) J. Med. Chem. 36 140 Occurrence Handle10.1021/jm00053a018 Occurrence Handle8421280

  14. 14.

    R. Jäger S.M. Kast J. Brickmann (2003) J. Chem. Inf. Comput. Sci. 43 237 Occurrence Handle10.1021/ci025576h Occurrence Handle12546558

  15. 15.

    F.W. Heiden G. Moeckel J. Brickmann (1993) J. Comput.-Aided Mol. Design 7 503 Occurrence Handle10.1007/BF00124359

  16. 16.

    Carrupt, P., Testa, B. and Gaillard, P., 1997 In Lipkowitz, K.B. and Boyd, D.B., (Eds.), Reviews in Computational Chemistry, Vol. 11. Wiley-VCH, New York, 1997, pp. 241–315.

  17. 17.

    F. Croizet M.H. Langlois J.P. Dubost P. Braquet E. Audry P. Dallet J.C. Colleter (1990) J. Mol. Graphics 8 153 Occurrence Handle10.1016/0263-7855(90)80056-L

  18. 18.

    J. Muñoz X. Barril B. Hernández M. Orozco F.J. Luque (2002) J. Comput. Chem. 23 554 Occurrence Handle10.1002/jcc.10055 Occurrence Handle11948582

  19. 19.

    C. Curutchet M. Orozco F.J. Luque (2001) J. Comput. Chem. 22 1180 Occurrence Handle10.1002/jcc.1076

  20. 20.

    S. Miertus E. Scrocco J. Tomasi (1981) Chem. Phys. 55 117 Occurrence Handle10.1016/0301-0104(81)85090-2

  21. 21.

    F.J. Luque J.M. Bofill M. Orozco (1995) J. Chem. Phys. 103 10183 Occurrence Handle10.1063/1.469921

  22. 22.

    F.J. Luque X. Barril M. Orozco (1999) J. Comput.-Aided Mol. Des. 13 139 Occurrence Handle10.1023/A:1008036526741 Occurrence Handle10091120

  23. 23.

    Muñoz, J., Barril, X., Luque, F.J., Gelpí, J.L. and Orozco, M., In Carbó-Dorca, R., Gironés, G. and Mezey, P.G. (Eds.), Fundamentals of Molecular Similarity, Vol. 4 Kluwer, New York, 2001, pp. 143–168.

  24. 24.

    R. Carbó A. Leyda M. Arnau (1980) Int. J. Quantum Chem. 17 1185 Occurrence Handle10.1002/qua.560170612

  25. 25.

    N.V. Harris C. Smith M.J. Ashton A.W. Bridge R.C. Bush E.C.J. Coffee D.I. Dron M.F. Harper D.J. Lythgoe C.G. Newton D. Riddel (1992) J. Med. Chem. 35 4384 Occurrence Handle10.1021/jm00101a016 Occurrence Handle1447739

  26. 26.

    M.P. Giovannoni V. Dal Piaz B.-M. Kwon M.-K. Kim Y.-K. Kim L. Toma D. Barlocco F. Bernini M. Canavesi (2001) J. Med. Chem. 44 4292 Occurrence Handle10.1021/jm010807h Occurrence Handle11708931

  27. 27.

    L. Toma M.P. Giovannoni V. Dal Piaz B.-M. Kwon Y.-K. Kim A. Gelain D. Barlocco (2001) Heterocycles 57 39–46

  28. 28.

    Roth, B.D., Drug Disc. Today, 3 (1998) 19.

  29. 29.

    A. Morreale I. Iriepa E. Gálvez (2002) Curr. Med. Chem. 9 99 Occurrence Handle11860352

  30. 30.

    H.S. Parihar K.S. Kirschbaum (2002) Bioorg. Med. Chem. Lett. 12 2743 Occurrence Handle10.1016/S0960-894X(02)00514-0 Occurrence Handle12217367

  31. 31.

    I.K. Khana R.M. Weier Y. Yu X.D. Xu F.J. Koszyk P.W. Collins C.M. Koboldt A.W. Veenhuizen W.E. Perkins J.J. Casler J.L. Masferrer Y.Y. Zhang (1997) J. Med. Chem. 40 1634 Occurrence Handle10.1021/jm9700225 Occurrence Handle9171873

  32. 32.

    I.K. Khana Y. Yu R.M. Huff R.M. Weier X. Xu F.J. Koszyk P.W. Collins J.N. Cogburn P.C. Isakson C.M. Koboldt J.L. Masferrer W.E. Perkins K. Seibert A.W. Veenhuizen J. Yuan D.C. Yang Y.Y. Zhang (2000) J. Med. Chem. 43 3168 Occurrence Handle10.1021/jm0000719 Occurrence Handle10956225

  33. 33.

    P. Mantri D. Witiak (1994) Curr. Med. Chem. 1 328

  34. 34.

    M.J.S. Dewar E.G. Zoebisch E.F. Healy J.J.P. Stewart (1995) J. Am. Chem. Soc. 107 3902 Occurrence Handle10.1021/ja00299a024

  35. 35.

    C. Curutchet A. Salichs X. Barril M. Orozco F.J. Luque (2003) J. Comput. Chem. 24 32 Occurrence Handle10.1002/jcc.10155 Occurrence Handle12483673

  36. 36.

    MOPAC6.0. Version locally modified by Luque, F.J. and Orozco, M. (Univ. Barcelona).

  37. 37.

    A. Capelli M. Anzini S. Vomero L. Canullo L. Mennuni F. Makovec E. Doucet M. Hamon M.C. Menzini P.G. Benedetti ParticleDe G. Bruni G. Romero A. Donati (1999) J. Med. Chem. 42 1556 Occurrence Handle10.1021/jm981112s Occurrence Handle10229626

  38. 38.

    M. Modica M. Santagati S. Guccione A. Santagati F. Russo A. Cagnotto M. Goegan T. Mennini (2001) Eur. J. Med. Chem. 36 287 Occurrence Handle10.1016/S0223-5234(01)01216-8 Occurrence Handle11337106

  39. 39.

    C. Colominas F.J. Luque M. Orozco (1999) J. Comput. Chem. 7 665 Occurrence Handle10.1002/(SICI)1096-987X(199905)20:7<665::AID-JCC2>3.0.CO;2-W

  40. 40.

    X. Barril J. Muñoz F.J. Luque M. Orozco (2000) Phys. Chem. Chem. Phys. 2 4897 Occurrence Handle10.1039/b000020p

  41. 41.

    J.J.P. Stewart (1989) J. Comput. Chem. 10 221 Occurrence Handle10.1002/jcc.540100209

  42. 42.

    R. Wang Y. Fu L. Lai (1997) J. Chem. Inf. Comput. Sci. 37 615 Occurrence Handle10.1021/ci960169p

  43. 43.

    R. Soliva C. Almansa S.G. Kalko F.J. Luque M. Orozco (2003) J. Med. Chem. 46 1372 Occurrence Handle10.1021/jm0209376 Occurrence Handle12672237

  44. 44.

    G.R. Desiraju B. Gopalakrishnan R.K.R. Jetti A. Nagaraju D. Raveendra J.A.R.P. Sarma M.E. Sobhia R. Thilagavathi (2002) J. Med. Chem. 45 4847 Occurrence Handle10.1021/jm020198t Occurrence Handle12383010

  45. 45.

    P. Chavatte S. Yous C. Marot N. Baurin D. Lesieur (2001) J. Med. Chem. 44 3223 Occurrence Handle10.1021/jm0101343 Occurrence Handle11563921

  46. 46.

    R.G. Kurumbail A.M. Stevens J.K. Gierse J.J. McDonald R.A. Stegeman J.Y. Pak D. Didelhaus J.M. Miyashiro T.D. Penning K. Seibert P.C. Isakson W.C. Stallings (1996) Nature 384 644 Occurrence Handle10.1038/384644a0 Occurrence Handle8967954

Download references

Author information

Correspondence to F. Javier Luque.

Additional information

J.M.M. and S.P. have contributed equally to this study.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muñoz-Muriedas, J., Perspicace, S., Bech, N. et al. Hydrophobic Molecular Similarity from MST Fractional Contributions to the Octanol/water Partition Coefficient. J Comput Aided Mol Des 19, 401–419 (2005). https://doi.org/10.1007/s10822-005-7928-3

Download citation

Keywords

  • molecular similarity
  • octanol/water partition coefficient
  • continuum solvation methods
  • MST model
  • hydrophobicity
  • molecular alignment