Skip to main content

3D-chiral Atom, Atom-type, and Total Non-stochastic and Stochastic Molecular Linear Indices and their Applications to Central Chirality Codification

Summary

Non-stochastic and stochastic 2D linear indices have been generalized to codify chemical structure information for chiral drugs, making use of a trigonometric 3D-chirality correction factor. These descriptors circumvent the inability of conventional 2D non-stochastic [Y. Marrero-Ponce. J. Chem. Inf. Comp., Sci. l 44 (2004) 2010] and stochastic [Y. Marrero-Ponce, et al. Bioorg. Med. Chem., 13 (2005) 1293] linear indices to distinguish σ-stereoisomers. In order to test the potential of this novel approach in drug design we have modelled the angiotensin-converting enzyme inhibitory activity of perindoprilate’s σ-stereoisomers combinatorial library. Two linear discriminant analysis models, using non-stochastic and stochastic linear indices, were obtained. The models showed an accuracy of 100% and 96.65% for the training set; and 88.88% and 100% in the external test set, respectively. Canonical regression analysis corroborated the statistical quality of these models (Rcan of 0.78 and of 0.77) and was also used to compute biology activity canonical scores for each compound. After that, the prediction of the σ-receptor antagonists of chiral 3-(3-hydroxyphenyl)piperidines by linear multiple regression analysis was carried out. Two statistically significant QSAR models were obtained when non-stochastic (R2 = 0.982 and s = 0.157) and stochastic (R2 = 0.941 and s = 0.267) 3D-chiral linear indices were used. The predictive power was assessed by the leave-one-out cross-validation experiment, yielding values of q2 = 0.982 (scv = 0.186) and q2  = 0.90 (scv = 0.319), respectively. Finally, the prediction of the corticosteroid-binding globulin binding affinity of steroids set was performed. The best results obtained in the cross-validation procedure with non-stochastic (q2 = 0.904) and stochastic (q2 = 0.88) 3D-chiral linear indices are rather similar to most of the 3D-QSAR approaches reported so far. The validation of this method was achieved by comparison with previous reports applied to the same data set. The non-stochastic and stochastic 3D-chiral linear indices appear to provide an interesting alternative to other more common 3D-QSAR descriptors.

This is a preview of subscription content, access via your institution.

References

  1. A. Golbraikh D. Bonchev A. Tropsha (2001) J. Chem. Inf. Comput. Sci. 41 147 Occurrence Handle10.1021/ci000082a Occurrence Handle11206367

    Article  PubMed  Google Scholar 

  2. J.V. Julián-Ortiz Particlede R. García-Doménech J. Gálvez R. Soler-Roca F.J. Garcia-March G.M. Anton-Fos (1996) J. Cromat. 719 37

    Google Scholar 

  3. V.M., Potapov (1988) Stereochemistry Khimia Moscow

    Google Scholar 

  4. H. Schumacher D.A. Blake J.M. Gurian J.R. Gillette (1968) J. Pharmacol. Exp. Ther. 160 189 Occurrence Handle5639104

    PubMed  Google Scholar 

  5. S.C. Stinson (2000) Chem. Eng. News 78 43

    Google Scholar 

  6. A.B. Buda K. Mislow (1991) J. Mol. Struct. (Theochem) 232 1 Occurrence Handle10.1016/0166-1280(91)85239-4

    Article  Google Scholar 

  7. Avnir, D., Hel-Or, H.Z. and Mezey, P.G., In: Schleyer, P.V.R., Allinger, N.L., Clark, T., Gasteiger, J., Kollman, P.A., Schaefer III, H.F. and Schreiner P.R., (Eds.), Symmetry and Chirality: Continuos Measures, The Encyclopedia of Computational Chemistry, Vol. 4, Wiley, Chichester, 1998.

  8. H. Zabrodsky D. Avnir (1995) J. Am. Chem. Soc. 117 462 Occurrence Handle10.1021/ja00106a053

    Article  Google Scholar 

  9. H.P. Schultz E.B. Schultz T.P. Schultz (1995) J. Chem. Inf. Comput. Sci. 35 864 Occurrence Handle10.1021/ci00027a011

    Article  Google Scholar 

  10. J.V. Julián-Ortiz Particlede C.G. Alapont Particlede I. Ríos-Santamarina R. García-Doménech J. Gálvez (1998) J. Mol. Graph. Mod. 16 14 Occurrence Handle10.1016/S1093-3263(98)00013-8

    Article  Google Scholar 

  11. H. González-Díaz I. Hernández-Sánchez E. Uriarte L. Santana (2003) Comput. Biol. Chem. 27 217 Occurrence Handle10.1016/S0097-8485(02)00053-0 Occurrence Handle12927098

    Article  PubMed  Google Scholar 

  12. E. Estrada E. Uriarte (2001) Curr. Med. Chem. 8 1699 Occurrence Handle11562289

    PubMed  Google Scholar 

  13. Y. Marrero-Ponce (2003) Molecules 8 687

    Google Scholar 

  14. Y. Marrero-Ponce (2004) J. Chem. Inf. Comput. Sci. 44 2010 Occurrence Handle10.1021/ci049950k Occurrence Handle15554670

    Article  PubMed  Google Scholar 

  15. Y. Marrero-Ponce M.A. Cabrera V. Romero E. Ofori L.A. Montero (2003) Int. J. Mol. Sci. 4 512

    Google Scholar 

  16. Y. Marrero-Ponce J.A. Castillo-Garit F. Torrens V. Romero-Zaldivar E. Castro (2004) Molecules 9 1100

    Google Scholar 

  17. Y. Marrero-Ponce (2004) Bioorg. Med. Chem. 12 6351 Occurrence Handle10.1016/j.bmc.2004.09.034 Occurrence Handle15556754

    Article  PubMed  Google Scholar 

  18. Y. Marrero-Ponce M.A. Cabrera V. Romero H.D. González F. Torrens (2004) J. Pharm. Pharm. Sci. 7 186 Occurrence Handle15367375

    PubMed  Google Scholar 

  19. Y. Marrero-Ponce J.A. Castillo-Garit E. Olazábal H.S. Serrano A. Morales N. Castañedo F. Ibarra-Velarde A. Huesca-Guillen E. Jorge A. Valle Particledel F. Torrens E.A. Castro (2004) J. Comput. Aid. Mol. Des. 18 615 Occurrence Handle10.1007/s10822-004-5171-y

    Article  Google Scholar 

  20. Y. Marrero-Ponce A. Montero-Torres C. Romero-Zaldivar M. Iyarreta-Veitía M. Mayón-Peréz R. García-Sánchez (2005) Bioorg. Med. Chem. 13 1293 Occurrence Handle10.1016/j.bmc.2004.11.008 Occurrence Handle15670938

    Article  PubMed  Google Scholar 

  21. Y. Marrero-Ponce M.A. Cabrera V. Romero-Zaldivar M. Bermejo D. Siverio F. Torrens (2005) Int. Elect. J. Mol. Des. 4 124

    Google Scholar 

  22. Y. Marrero-Ponce J.A. Castillo-Garit E. Olazábal H.S. Serrano A. Morales N. Castañedo F. Ibarra-Velarde A. Huesca-Guillen A.M. Sánchez F. Torrens E.A. Castro (2005) Bioorg. Med. Chem. 13 1005 Occurrence Handle10.1016/j.bmc.2004.11.040 Occurrence Handle15670908

    Article  PubMed  Google Scholar 

  23. Y. Marrero-Ponce D. Nodarse H. González-Díaz R. Ramos Armas Particlede V. Romero-Zaldivar F. Torrens E. Castro (2004) Int. J. Mol. Sci. 5 276

    Google Scholar 

  24. Y. Marrero-Ponce J.A. Castillo-Garit D. Nodarse (2005) Bioorg. Med. Chem. 13 3397 Occurrence Handle10.1016/j.bmc.2005.03.010 Occurrence Handle15848751

    Article  PubMed  Google Scholar 

  25. Y. Marrero-Ponce H. González-Díaz V. Romero F. Torrens E.A. Castro (2004) Bioorg. Med. Chem. 12 5331 Occurrence Handle10.1016/j.bmc.2004.07.051 Occurrence Handle15388160

    Article  PubMed  Google Scholar 

  26. Y. Marrero-Ponce R. Medina E.A. Castro R. Armas Particlede H. González V. Romero F. Torrens (2004) Molecules. 9 1124

    Google Scholar 

  27. Y. Marrero-Ponce R. Medina J.A. Castillo-Garit V. Romero F. Torrens E.A. Castro (2005) Bioorg. Med. Chem. 13 3003 Occurrence Handle10.1016/j.bmc.2005.01.062 Occurrence Handle15781410

    Article  PubMed  Google Scholar 

  28. L. Pauling (1939) The Nature of Chemical Bond Cornell University Press New York

    Google Scholar 

  29. Eliel, E., Wilen, S. and Mander, L., Stereochemistry of Organic Compounds, John Wiley and Sons Inc, 1994.

  30. M.J.S. Dewar (1985) J. Phys. Chem. 89 2145 Occurrence Handle10.1021/j100257a004

    Article  Google Scholar 

  31. Marrero-Ponce, Y., Romero, V., TOMOCOMD software. Central University of Las Villas, 2002. TOMOCOMD (TOpological MOlecular COMputer Design) for Windows, version 1.0 is a preliminary experimental version; in future a professional version will be obtained upon request to Y. Marrero: yovanimp@qf.uclv.edu.cu; ymarrero77@yahoo. es.

  32. STATISTICA version. 6.0, Statsoft, Inc.

  33. P. Baldi S. Brunak Y. Chauvin C.A. Andersen H. Nielsen (2000) Bioinformatics 16 412 Occurrence Handle10.1093/bioinformatics/16.5.412 Occurrence Handle10871264

    Article  PubMed  Google Scholar 

  34. Ford M.-G. and Salt D.-W. The use of Canonical Correlation Analysis; In Chemometric Methods in Molecular Design van de Waterbeemd H., Ed. VCH Publishers New York, 1995, pp. 283–292.

  35. Wold S. and Erikson L. Statistical Validation of QSAR Results. In van de Waterbeemd H., Ed. Chemometric Methods in Molecular Design VCH Publishers New York, 1995, pp. 309–318.

  36. Belsey, D. A., Kuh, E. and Welsch, R.E., Regression Diagnostics, Wiley, New York, 1980.

  37. A. Golbraikh A. Tropsha (2002) J. Mol. Graph. Modell. 20 269 Occurrence Handle10.1016/S1093-3263(01)00123-1

    Article  Google Scholar 

  38. M. Vicent B. Marchand G. Rémond S. Jaquelin-Guinamant G. Damien B. Portevin J. Baumal J. Volland J. Bouchet P. Lambert B. Serkiz W. Luitjen M. Lauibie P. Schiavi (1992) Drug Des. Discov. 9 11 Occurrence Handle1457697

    PubMed  Google Scholar 

  39. R.D. Cramer SuffixIII. D.E. Patterson J.D. Bunce (1988) J. Amer. Chem. Soc. 110 5959 Occurrence Handle10.1021/ja00226a005

    Article  Google Scholar 

  40. Coats, E.A. In 3D QSAR in Drug Design.V.3. Kubinyi, H., Folkers, G., Martin, Y.C., (Eds.), Kluwer/ESCOM: Dordrecht, 1998, pp 219–213.

  41. B.D. Silverman (2000) Quant. Struct.-Act. Relat. 19 237 Occurrence Handle10.1002/1521-3838(200006)19:3<237::AID-QSAR237>3.3.CO;2-1

    Article  Google Scholar 

  42. E.A. Coats (1998) Perspect. Drug Discov. Des. 12–14 199 Occurrence Handle10.1023/A:1017050508855

    Article  Google Scholar 

  43. N. Stief Baumann Knutt. (2003) J. Med. Chem. 46 1390 Occurrence Handle10.1021/jm021077w Occurrence Handle12672239

    Article  PubMed  Google Scholar 

  44. G. Klebe U. Abraham T. Mietzner (1994) J. Med. Chem. 37 4130 Occurrence Handle10.1021/jm00050a010 Occurrence Handle7990113

    Article  PubMed  Google Scholar 

  45. Robert, D., Amat, L. and Carbo-Dorca, R., J. Chem. Inf. Comp. Sci., 39 (1999) 333.

    Google Scholar 

  46. M. Lobato L. Amat E. Besalu R. Carbo-Dorca (1998) J. Chem. Inf. Comp. Sci. 39 465

    Google Scholar 

  47. M. Wagener J. Sadowski J. GAsteiger (1995) J. Am. Chem. Soc. 117 7769 Occurrence Handle10.1021/ja00134a023

    Article  Google Scholar 

  48. M.F. Parretti R.T. Kroemer J.H. Rothman W.G. Richards (1997) J. Comput. Chem. 18 1344 Occurrence Handle10.1002/(SICI)1096-987X(199708)18:11<1344::AID-JCC2>3.0.CO;2-L

    Article  Google Scholar 

  49. S.S. So M. Karplus (1997) J. Med. Chem. 40 4347 Occurrence Handle10.1021/jm970487v Occurrence Handle9435904

    Article  PubMed  Google Scholar 

  50. H. Chen J. Zhou G. Xie (1998) J. Chem. Inf. Comp. Sci. 39 243 Occurrence Handle10.1021/ci970004w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yovani Marrero-Ponce.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marrero-Ponce, Y., Castillo-Garit, J.A. 3D-chiral Atom, Atom-type, and Total Non-stochastic and Stochastic Molecular Linear Indices and their Applications to Central Chirality Codification. J Comput Aided Mol Des 19, 369–383 (2005). https://doi.org/10.1007/s10822-005-7575-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-7575-8

Key words:

  • 3D-QSAR
  • σ-receptor antagonists
  • angiotesin-converting enzyme inhibitors
  • binding affinity of steroids
  • non-stochastic and stochastic 3D-chiral linear indices