Skip to main content

Advertisement

Log in

Classification of a large anticancer data set by Adaptive Fuzzy Partition

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

An Adaptive Fuzzy Partition (AFP) algorithm, derived from Fuzzy Logic concepts, was used to classify an anticancer data set, including about 1300 compounds subdivided into eight mechanisms of action. AFP classification builds relationships between molecular descriptors and bio-activities by dynamically dividing the descriptor hyperspace into a set of fuzzy subspaces. These subspaces are described by simple linguistic rules, from which scores ranging between 0 and 1 can be derived. The latter values define, for each compound, the degrees of membership of the different mechanisms analyzed. A particular attention was devoted to develop structure–activity relations that have a real utility. Then, well-defined and widely accepted protocols were used to validate the models by defining their robustness and prediction ability. More particularly, after selecting the most relevant descriptors with help of a genetic algorithm, a training set of 640 compounds was isolated by a rational procedure based on Self-Organizing Maps. The related AFP model was then validated with help of a validation set and, above all, of cross-validation and Y-randomization procedures. Good validation scores of about 80% were obtained, underlining the robustness of the model. Moreover, the prediction ability was evaluated with 374 test compounds that had not been used to establish the model and 77% of them were predicted correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boyd, M.R., In Teicher B.A. (Ed.), Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval. Humana Press, Totowa, NJ, 1997, pp. 23–42.

  • MDL® Drug Data Report. MDL Information Systems Inc., San Leandro, CA, 2004.

  • P. Willett (1997) Perspect. Drug Discov. Des. 7/8 1

    Google Scholar 

  • D.M. Bayada H. Hamersma V.J. van Geerestein (1999) J. Chem. Inf. Comput. Sci., 39 1

    Google Scholar 

  • E.M. Gordon J.F. Kerwin SuffixJr. (Eds) (1998) Combinatorial Chemistry and Molecular Diversity in Drug Discovery Wiley New York

    Google Scholar 

  • H. van de Waterbeemd (1995) Chemometric Methods in Molecular Design VCH, Weinheim Germany

    Google Scholar 

  • H. Kubinyi G. Folkers Y.C. Martin (Eds) (1998) 3D QSAR in Drug Design, Recent Advances Kluwer Escom Dordrecht, The Netherlands

    Google Scholar 

  • K. Paull R.H. Shoemaker L. Hodes A. Monks D.A. Scudiero L. Rubinstein J. Plowman M.R. Boyd (1989) J. Natl. Cancer Inst., 81 1088

    Google Scholar 

  • Paull, K., Hamel, E. and Malspeis, L., In Foye, W.O. (Ed.), Cancer Chemotherapeutic Agents. American Chemical Society Books, Washington, DC, 1995, pp. 9–45.

  • J.N. Weinstein K.W. Kohn M.R. Grever V.N. Viswanadhan L.V. Rubinstein A.P. Monks D.A. Scudiero L. Welch A.D. Koutsoukos A.J. Chiausa K.D. Paull (1992) Science 258 447

    Google Scholar 

  • W.W. van Osdol T.G. Myers K.D. Paull K.W. Kohn J.N. Weinstein (1994) J. Natl. Cancer Inst. 86 1853

    Google Scholar 

  • A.D. Koutsoukos L.V. Rubinstein D. Faraggi R.M. Simon S. Kalyandrug J.N. Weinstein K.W. Kohn K.D. Paull (1994) Stat Med. 13 719

    Google Scholar 

  • J.N. Weinstein T.G. Myers P.M. O’Connor S.H. Friend A.J. Fornace SuffixJr. K.W. Kohn T. Fojo S.E. Bates L.V. Rubinstein N.L. Anderson J.K. Buolamwini W.W. van Osdol A.P. Monks D.A. Scudiero E.A. Sausville D.W. Zaharevitz B. Bunow V.N. Viswanadhan G.S. Johnson R.E. Wittes K.D. Paull (1997) Science 275 343

    Google Scholar 

  • L.M. Shi Y. Fan J.K. Lee M. Waltham D.T. Andrews U. Scherf K.D. Paull J.N. Weinstein (2000) J. Chem. Inf. Comput. Sci. 40 367 Occurrence Handle10.1021/ci990087b Occurrence Handle1:CAS:528:DyaK1MXnvFKgsb0%3D Occurrence Handle10761142

    Article  CAS  PubMed  Google Scholar 

  • L.M. Shi T.G. Myers Y. Fan P.M. O’Connor K.D. Paull S.H. Friend J.N. Weinstein (1998) Mol. Pharmacol. 53 241

    Google Scholar 

  • Y. Fan L.M. Shi K.W. Kohn Y. Pommier J.N. Weinstein (2001) J. Med. Chem. 44 3254

    Google Scholar 

  • P. Blower M. Fligner J. Verducci J. Bjoraker (2002) J. Chem. Inf. Comput. Sci. 42 393

    Google Scholar 

  • V.V. Poroikov D.A. Filimonov W.D. Ihlenfeldt T.A. Gloriozova A.A. Lagunin Y.V. Borodina A.V. Stepanchikova M.C. Nicklaus (2003) J. Chem. Inf. Comput. Sci. 43 228

    Google Scholar 

  • J. Folkman (1995) Nat. Med. 1 27

    Google Scholar 

  • CIPSLINE ®. Prous Science, Barcelona, Spain, 2003.

  • F. Ros M. Pintore J.R. Chrétien (2002) Chemometr. Intell. Lab. 63 15

    Google Scholar 

  • Zadeh, L.A., In Van Ryzin, J. (Ed.), Classification and Clustering. Academic Press, New York Syst., 1977, pp. 251–299.

  • F. Ros O. Taboureau M. Pintore J.R. Chrétien (2003) Chemometr. Intell. Lab. Sys. 67 29

    Google Scholar 

  • M. Pintore N. Piclin E. Benfenati G. Gini J.R. Chrétien (2003) Environ. Toxicol. Chem. 22 983

    Google Scholar 

  • M. Pintore H. van de Waterbeemd N. Piclin J.R. Chrétien (2003) Eur. J. Med. Chem. 38 427

    Google Scholar 

  • M. Pintore K. Audouze F. Ros J.R. Chretien (2002) Data Sci. J. 1 99

    Google Scholar 

  • A. Tropsha P. Grammatica V.K. Gombar (2003) QSAR. Comb. Sci., 22 69

    Google Scholar 

  • MDL® QSAR version 2.2. MDL Information Systems Inc., San Leandro, CA, 2003.

  • M. Pintore O. Taboureau F. Ros J.R. Chrétien (2001) Eur. J. Med. Chem. 36 349

    Google Scholar 

  • R.L. Haupt S.E. Haupt (Eds) (1998) Practical Genetic Algorithms Wiley New York

    Google Scholar 

  • R. Leardi A.L. Gonzales (1998) Chemometr. Intell. Lab. Syst. 41 195

    Google Scholar 

  • T. Kohonen (Eds) (2001) Self-Organizing Maps Springer-Verlag Berlin, Germany

    Google Scholar 

  • Y. Lin G.J. Cunninghan (1994) J. Intell. Fuzzy Syst. 2 243

    Google Scholar 

  • M. Sugeno T.A. Yasakawa (1993) IEEE T. Fuzzy Syst. 1 7

    Google Scholar 

  • Dubois, D. and Prade, H., In Shafer, G. and Pearl, J. (Eds.), Readings in Uncertain Reasoning. Morgan Kaufmann, San Francisco, CA, 1990, pp. 742–761.

  • M.M. Gupta J. Qi (1991) Fuzzy Set Syst. 40 431

    Google Scholar 

  • M. Pintore N. Piclin E. Benfenati G. Gini J.R. Chrétien (2003) QSAR Comb. Sci. 22 210

    Google Scholar 

  • A. Goldbraikh A. Tropsha (2002) J. Mol. Graph. Model. 20 269

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques R. Chrétien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piclin, N., Pintore, M., Wechman, C. et al. Classification of a large anticancer data set by Adaptive Fuzzy Partition. J Comput Aided Mol Des 18, 577–586 (2004). https://doi.org/10.1007/s10822-004-4076-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-004-4076-0

Keywords

Navigation