Skip to main content
Log in

First-principles modeling of lattice defects: advancing our insight into the structure-properties relationship of ice

  • Published:
Scientific Modeling and Simulation SMNS

Abstract

We discuss a number of examples that demonstrate the value of computational modeling as a complementary approach in the physics and chemistry of ice I h , where real-life experiments often do not give direct access to the desired information or whose interpretation typically requires uncontrollable assumptions. Specifically, we discuss two cases in which, guided by experimental insight, density-functional-theory-based first-principles methods are applied to study the properties of lattice defects and their relationship to ice I h s macroscopic behavior. First, we address a question involving molecular point defects, examining the energetics of formation of the molecular vacancy and a number of different molecular interstitial configurations. The results indicate that, as suggested by earlier experiments, a configuration involving bonding to the surrounding hydrogen-bond network is the preferred interstitial structure in ice I h . The second example involves the application of modeling to elucidate on the microscopic origin of the experimental observation that a specific type of ice defect is effectively immobile while others are not. Inspired by previous suggestions that this defect type may be held trapped at other defect sites and our finding that the bound configuration is the preferred interstitial configuration in ice I h , we use first-principles modeling to examine the binding energetics of the specific ice defect to the molecular vacancy and interstitial. The results suggest a preferential binding of the immobile defect to the molecular interstitial, possibly explaining its experimentally observed inactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petrenko V.F., Whitworth R.W.: The Physics of Ice. Oxford University Press, Oxford (1999)

    Google Scholar 

  2. Ashcroft N.W., Mermin N.D.: Solid State Physics. Thomson Learning, USA (1976)

    Google Scholar 

  3. Pauling L.: The structure and entropy of ice and other crystals with some randomness of atomic arrangement. J. Am. Chem Soc 57, 2690 (1935)

    Google Scholar 

  4. Bjerrum N.: Structure and property of ice. Science 115, 385–390 (1952)

    Article  PubMed  ADS  CAS  Google Scholar 

  5. Jaccard C.: Étude théorique et expérimentale des propriétés de la glace. Helv. Phys. Acta 32, 89 (1959)

    CAS  Google Scholar 

  6. Mogensen O.E., Eldrup M.: Vacancies in pure ice studied by positron annihilation techniques. J. Glacio- logy 21, 85 (1978)

    ADS  CAS  Google Scholar 

  7. Eldrup M., Mogensen O.E., Bilgram J.H.: Vacancies in HF-doped and in irradiated ice by positron annihilation techniques. J. Glaciology 21, 101–113 (1978)

    ADS  CAS  Google Scholar 

  8. Hondoh T., Itoh T., Higashi A.: Behavior of point defects in ice crystals revealed by X-ray topography. In: Takamura, J., Doyama, M., Kiritani, M. (eds) Point Defects and Defect Interactions in Metals., pp. 599. University of Tokyo Press, Tokyo (1982)

    Google Scholar 

  9. Goto K., Hondoh T., Higashi A.: Experimental determinations of the concentration and mobility of interstitials in pure ice crystals. In: Takamura, J., Doyama, M., Kiritani, M. (eds) Point Defects and Defect Interactions in Metals., pp. 174. University of Tokyo Press, Tokyo (1982)

    Google Scholar 

  10. Goto K., Hondoh T., Higashi A.: Determination of diffusion coefficients of self-interstitials in ice with a new method of observing climb of dislocations by X-ray topography. Jpn. J. Appl. Phys 25, 351–357 (1986)

    Article  ADS  CAS  Google Scholar 

  11. Hondoh T., Azuma K., Higashi A.: Self-interstitials in ice. J. Phys. Paris 48, C1 (1987)

    Google Scholar 

  12. Oguro M., Hondohin T.: Interactions between dislocations and point defects in ice crystals. In: Higashi, A.(eds) Lattice Defects in Ice Crystals., pp. 49. Hokkaido University Press, Sapporo (1988)

    Google Scholar 

  13. Fletcher N.H.: The Chemical Physics of Ice. Cambridge University Press, London (1970)

    Google Scholar 

  14. Guillot B.: A reappraisal of what we have learnt during three decades of computer simulations on water. J. Mol. Liq 101(1–3), 219 (2002)

    Article  CAS  Google Scholar 

  15. Martin R.M.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  16. Kohanoff J.: Electronic Structure Calculations for Solids and Molecules. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  17. Kresse G., Hafner J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)

    Article  ADS  CAS  Google Scholar 

  18. Kresse G., FurthMüller J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mat. Sc 6, 15–50 (1996)

    Article  CAS  Google Scholar 

  19. Kresse G., Joubert J.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Hayward J.A., Reimers J.R.: Unit cells for the simulation of hexagonal ice. J. Chem. Phys 106, 1518 (1997)

    Article  ADS  CAS  Google Scholar 

  21. Feibelman P.J.: Partial dissociation of water on Ru(0001). Science 295, 99–102 (2002)

    Article  PubMed  ADS  CAS  Google Scholar 

  22. de Koning M., Antonelli A., da Silva A.J.R., Fazzio A.: Orientational defects in ice I h : an interpretation of electrical conductivity measurements. Phys. Rev. Lett 96, 075501 (2006a)

    Article  PubMed  ADS  Google Scholar 

  23. de Koning M., Antonelli A., da Silva A.J.R., Fazzio A.: Structure and energetics of molecular point defects in ice I h . Phys. Rev. Lett 97, 155501 (2006b)

    Article  PubMed  ADS  Google Scholar 

  24. LeSar R., Najafabadi R., Srolovitz D.L.: Finite-temperature defect properties from free-energy minimization. Phys. Rev. Lett 63, 624–627 (1989)

    Article  PubMed  ADS  CAS  Google Scholar 

  25. de Koning M., Antonelli A.: On the trapping of Bjerrum defects in ice I: The case of the molecular vacancy. J. Phys. Chem. B 111, 12537 (2007)

    Article  PubMed  Google Scholar 

  26. de Koning M., Antonelli A.: Modeling equilibrium concentrations of Bjerrum and molecular point defects and their complexes in ice Ih. J. Chem. Phys 128, 164502 (2008)

    Article  PubMed  ADS  Google Scholar 

  27. Hamann D.R.: H2O hydrogen bonding in density-functional theory. Phys. Rev. B 55, R10157 (1997)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice de Koning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Koning, M. First-principles modeling of lattice defects: advancing our insight into the structure-properties relationship of ice. Sci Model Simul 15, 123–141 (2008). https://doi.org/10.1007/s10820-008-9110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-008-9110-4

Keywords

Navigation