Skip to main content
Log in

Enveloped viruses understood via multiscale simulation: computer-aided vaccine design

  • Published:
Scientific Modeling and Simulation SMNS

Abstract

Enveloped viruses are viewed as an opportunity to understand how highly organized and functional biosystems can emerge from a collection of millions of chaotically moving atoms. They are an intermediate level of complexity between macromolecules and bacteria. They are a natural system for testing theories of self-assembly and structural transitions, and for demonstrating the derivation of principles of microbiology from laws of molecular physics. As some constitute threats to human health, a computer-aided vaccine and drug design strategy that would follow from a quantitative model would be an important contribution. However, current molecular dynamics simulation approaches are not practical for modeling such systems. Our multiscale approach simultaneously accounts for the outer protein net and inner protein/genomic core, and their less structured membranous material and host fluid. It follows from a rigorous multiscale deductive analysis of laws of molecular physics. Two types of order parameters are introduced: (1) those for structures wherein constituent molecules retain long-lived connectivity (they specify the nanoscale structure as a deformation from a reference configuration) and (2) those for which there is no connectivity but organization is maintained on the average (they are field variables such as mass density or measures of preferred orientation). Rigorous multiscale techniques are used to derive equations for the order parameters dynamics. The equations account for thermal-average forces, diffusion coefficients, and effects of random forces. Statistical properties of the atomic-scale fluctuations and the order parameters are co-evolved. By combining rigorous multiscale techniques and modern supercomputing, systems of extreme complexity can be modeled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R.D., Kale L., Schulten K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  PubMed  CAS  Google Scholar 

  2. Sanbonmatsu K.Y., Tung C.S.: High performance computing in biology: multimillion atom simulations of nanoscale systems. J. Struct. Biol. 157, 470–480 (2007)

    Article  PubMed  CAS  Google Scholar 

  3. Stewart G.T.: Liquid crystals in biology. I. Historical, biological and medical aspects. Liquid. Cryst. 30, 541–557 (2003)

    Article  CAS  Google Scholar 

  4. Zhang Y., Kostyuchenko V.A., Rossman M.G.: Structural analysis of viral nucleocapsids by subtraction of partial projections. J. Struct. Biol. 157, 356–364 (2007)

    Article  PubMed  CAS  Google Scholar 

  5. Zhang Y., Zhang W., Ogata S., Clements D., Strauss J.H., Baker T.S., Kuhn R.J., Rossmann M.G.: Conformational changes of the flavivirus E glycoprotein. Structure 12, 1607–1618 (2004)

    Article  PubMed  CAS  Google Scholar 

  6. Zhang Y., Corver J., Chipman P.R., Zhang W., Pletnev S.V., Sedlak D., Baker T.S., Strauss J.H., Kuhn R.J., Rossman M.G.: Structures of immature flavivirus particles. EMBO J. 22, 2604–2613 (2003)

    Article  PubMed  CAS  Google Scholar 

  7. Klasse P.J., Bron R., Marsh M.: Mechanisms of enveloped virus entry into animal cells. Adv. Drug. Deliv. Rev. 34, 65–91 (1998)

    Article  PubMed  CAS  Google Scholar 

  8. Chandrasekhar S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Bose S., Ortoleva P.: Reacting hard sphere dynamics: Liouville equation for condensed media. J. Chem. Phys. 70, 3041–3056 (1979)

    Article  ADS  CAS  Google Scholar 

  10. Bose S., Ortoleva P.: A hard sphere model of chemical reaction in condensed media. Phys. Lett. A 69, 367–369 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bose S., Bose S., Ortoleva P.: Dynamic Padé approximants for chemical center waves. J. Chem. Phys. 72, 4258–4263 (1980)

    Article  ADS  CAS  Google Scholar 

  12. Bose S., Medina-Noyola M., Ortoleva P.: Third body effects on reactions in liquids. J. Chem. Phys. 75, 1762–1771 (1981)

    Article  ADS  CAS  Google Scholar 

  13. Deutch J.M., Oppenheim I.: The concept of Brownian motion in modern statistical mechanics. Faraday Discuss. Chem. Soc. 83, 1–20 (1987)

    Article  CAS  Google Scholar 

  14. Shea J.E., Oppenheim I.: Fokker-Planck equation and Langevin equation for one Brownian particle in a nonequilibrium bath. J. Phys. Chem. 100, 19035–19042 (1996)

    Article  CAS  Google Scholar 

  15. Shea J.E., Oppenheim I.: Fokker-Planck equation and non-linear hydrodynamic equations of a system of several Brownian particles in a non-equilibrium bath. Phys. A 247, 417–443 (1997)

    Article  CAS  Google Scholar 

  16. Peters M.H.: Fokker-Planck equation and the grand molecular friction tensor for combined translational and rotational motions of structured Brownian particles near structures surface. J. Chem. Phys. 110, 528–538 (1998)

    Article  ADS  Google Scholar 

  17. Peters M.H.: Fokker-Planck equation, molecular friction, and molecular dynamics for Brownian particle transport near external solid surfaces. J. Stat. Phys. 94, 557–586 (1999)

    Article  MATH  Google Scholar 

  18. Coffey W.T., Kalmykov Y.P., Waldron J.T.: The Langevin Equation with Applications to Stochastic Problems in Physics Chemistry and Electrical Engineering. World Scientific Publishing Co, River Edge (2004)

    MATH  Google Scholar 

  19. Ortoleva P.: Nanoparticle dynamics: a multiscale analysis of the Liouville equation. J. Phys. Chem. 109, 21258–21266 (2005)

    CAS  Google Scholar 

  20. Miao Y., Ortoleva P.: All-atom multiscaling and new ensembles for dynamical nanoparticles. J. Chem. Phys. 125, 044901 (2006)

    Article  ADS  Google Scholar 

  21. Miao Y., Ortoleva P.: Viral structural transitions: an all-atom multiscale theory. J. Chem. Phys. 125, 214901 (2006)

    Article  PubMed  ADS  Google Scholar 

  22. Shreif Z., Ortoleva P.: Curvilinear all-atom multiscale (CAM) theory of macromolecular dynamics. J. Stat. Phys. 130, 669–685 (2008)

    Article  MATH  ADS  CAS  Google Scholar 

  23. Miao, Y., Ortoleva, P.: Molecular dynamics/OP eXtrapolation (MD/OPX) for bionanosystem simulations. J. Comput. Chem. (2008). doi:10.1002/jcc.21071

  24. Pankavich S., Miao Y., Ortoleva J, Shreif Z., Ortoleva P.: Stochastic dynamics of bionanosystems: multiscale analysis and specialized ensembles. J. Chem. Phys. 128, 234908 (2008)

    Article  PubMed  ADS  CAS  Google Scholar 

  25. Pankavich S., Shreif Z., Ortoleva P.: Multiscaling for classical nanosystems: derivation of Smoluchowski and Fokker-Planck equations. Phys. A 387, 4053–4069 (2008)

    Article  Google Scholar 

  26. Shreif, Z., Ortoleva, P.: Multiscale derivation of an augmented Smoluchowski. Phys. A (2008, accepted)

  27. Shreif, Z., Ortoleva, P.: Computer-aided design of nanocapsules for therapeutic delivery. Comput. Math. Methods Med. (2008, to appear)

  28. Pankavich, S., Shreif, Z., Miao, Y., Ortoleva, P.: Self-assembly of nanocomponents into composite structures: derivation and simulation of Langevin equation. J. Chem. Phys. (2008, accepted)

  29. Pankavich, S., Ortoleva, P.: Self-assembly of nanocomponents into composite structures: multiscale derivation of stochastic chemical kinetic models. ACS Nano (2008, in preparation)

  30. Pankavich, S., Ortoleva, P.: Multiscaling for systems with a broad continuum of characteristic lengths and times: structural transitions in nanocomposites. (2008, in preparation)

  31. Shreif, Z.,Ortoleva, P.: All-atom/continuum multiscale theory: application to nanocapsule therapeutic delivery. Multiscale Model. Simul. (2008, submitted)

  32. Jaqaman K., Ortoleva P.: New space warping method for the simulation of large-scale macromolecular conformational changes. J. Comput. Chem. 23, 484–491 (2002)

    Article  PubMed  CAS  Google Scholar 

  33. Freddolino P.L., Arkhipov A.S., Larson S.B., McPherson A., Schulten K.: Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14, 437–449 (2006)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ortoleva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shreif, Z., Adhangale, P., Cheluvaraja, S. et al. Enveloped viruses understood via multiscale simulation: computer-aided vaccine design. Sci Model Simul 15, 363–380 (2008). https://doi.org/10.1007/s10820-008-9101-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-008-9101-5

Keywords

Navigation