Skip to main content
Log in

Dual-time scale crystal plasticity FE model for cyclic deformation of Ti alloys

  • Published:
Journal of Computer-Aided Materials Design

Abstract

A dual-time scale finite element model is developed in this paper for simulating cyclic deformation in a Titanium alloy Ti-6242. The material is characterized by crystal plasticity constitutive relations. Modeling cyclic deformation using conventional time integration algorithms in a single time scale can be prohibitive for crystal plasticity computations. Typically 3D crystal plasticity based fatigue simulations found in the literature are in the range of 100 cycles. Results are subsequently extrapolated to thousands of cycles, which can lead to considerable error in fatigue predictions. However, the dual-time scale model enables simulations up to a significantly high number of cycles to reach local states of damage initiation leading to fatigue crack growth. This formulation decomposes the governing equations into two sets of problems, corresponding to a coarse time scale (low frequency) cycle-averaged problem and a fine time scale (high frequency) oscillatory problem. A statistically equivalent 3D polycrystalline model of Ti-6242 is simulated by the crystal plasticity finite element model to study the evolution of local stresses and strains in the microstructure with cyclic loading. The comparison with the single time scale reference solution shows excellent accuracy while the efficiency gained through time-scale compression can be enormous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suresh, S.: Fatigue of Materials. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  2. Coffin, L.F.: Fatigue. Annu. Rev. Mater. Sci. 2, 313–348 (1973)

    Article  Google Scholar 

  3. Paris, P.C. et al.: The fracture mechanics approach to fatigue. In: Burke, J.J.(eds) Fatigue—an Interdisciplinary Approach. Syracuse University Press, Syracuse (1964)

    Google Scholar 

  4. Kalidindi, S.R., Bronkhorst, C.A.: Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solids 40, 537–569 (1992)

    Article  CAS  Google Scholar 

  5. Kothari, M., Anand, L.: Elasto-viscoplastic constitutive equations for polycrystalline metals: application to tantalum. J. Mech. Phys. Solids 46, 51–83 (1998)

    Article  CAS  Google Scholar 

  6. Balasubramanian, S., Anand, L.: Elasto-viscoplastic constitutive equations for polycrystalline fcc materials at low homogeneous temperatures. J. Mech. Phys. Solids 50, 101–126 (2002)

    Article  CAS  Google Scholar 

  7. Hasija, V., Ghosh, S., Mills, M.J., Joseph, D.S.: Modeling deformation and creep in Ti-6Al alloys with experimental validation. Acta Mater. 51, 4533–4549 (2003)

    Article  CAS  Google Scholar 

  8. Deka, D., Joseph, D., Ghosh, S., Mills, M.J.: Crystal plasticity modeling of deformation and creep in polycrystalline Ti-6242. Metall. Trans. A 17A(5), 1371–1388 (2006)

    Article  Google Scholar 

  9. Venkatramani, G., Deka, D., Ghosh, S.: Crystal plasticity based FE model for understanding microstructural effects on creep and dwell fatigue in Ti-6242. ASME J. Eng. Mater. Tech. 128(3), 356–365 (2006)

    Article  Google Scholar 

  10. Xie, C., Ghosh, S., Groeber, M.: Modeling cyclic deformation of HSLA steels using crystal plasticity. ASME J. Eng. Mater. Tech. 126, 339–352 (2004)

    Article  CAS  Google Scholar 

  11. Sinha, S., Ghosh, S.: Modeling cyclic ratcheting based fatigue life of HSLA steels using crystal plasticity FEM simulations and experiments. Int. J. Fatigue 28, 1690–1704 (2006)

    Article  CAS  Google Scholar 

  12. Bennett, V.P., McDowell, D.L.: Polycrystal orientation distribution effects on microslip in high cycle fatigue. Int. J. Fatigue 25, 27–39 (2003)

    Article  CAS  Google Scholar 

  13. Morrissey, R.J., McDowell, D.L., Nicholas, T.: Microplasticity in HCF of Ti-6Al-4V. Int. J. Fatigue 23, S55–S64 (2001)

    Article  CAS  Google Scholar 

  14. Turkmen, H.S., Loge, R.E., Dawson, P.R., Miller, M.: On the mechanical behavior of AA 7075-T6 during cyclic loading. Int. J. Fatigue 25, 267–281 (2003)

    Article  CAS  Google Scholar 

  15. Bhandari, Y., Groeber, M., Ghosh, S.: CAD based reconstruction of three dimensional polycrystalline microstructures from fib generated serial sections. J. Comp. Aid. Des. (in press, 2008)

  16. Groeber, M., Haley, B., Uchic, M., Dimiduk, D., Ghosh, S.: 3D reconstruction and characterization of polycrystalline microstructures using a FIB–SEM system. Mater. Character. 57(4–5), 259–273 (2006)

    Article  CAS  Google Scholar 

  17. Groeber, M., Bhandari, Y., Uchic, M., Dimiduk, D., Ghosh, S.: Reconstruction and characterization of 3D microstructures: an unbiased description of grain morphology. Multi-scale materials modeling Conference Proceedings, Symposium 4, Freiburg, Germany.

  18. Blekhman, I.I.: Vibrational Mechanics. World Scientific (2000)

  19. Thomsen, J.J.: Vibrations and Stability: Theory, Analysis, and Tools, 2nd ed. Springer-Verlag, Berlin

  20. Yu, Q., Fish, J.: Temporal homogenization of viscoelastic and viscoplastic solids subjected to locally periodic loading. Comput. Mech. 29, 199–211 (2002)

    Article  Google Scholar 

  21. Oskay, C., Fish, J.: Multiscale modeling of fatigue for ductile materials. Int. J. Multiscale Comput. Eng. 2, 1–25 (2004)

    Article  Google Scholar 

  22. Hall, E.O.: The deformation and ageing of mild steel III, discussion of results. Proc. Phys. Soc. B 6, 747–753 (1951)

    Article  Google Scholar 

  23. Petch, N.J.: The cleavage strength of Polycrystals. J. Iron Steel Inst. London 173, 25–28 (1953)

    Google Scholar 

  24. Venkataramani, G., Ghosh, S., Mills, M.J.: A size dependent crystal plasticity finite element model for creep and load shedding in polycrystalline Titanium alloys. Acta Mater. 55, 3971–3986 (2007)

    Article  Google Scholar 

  25. Asaro, R.J., Rice, J.R.: Strain localization in ductile single crystals. J. Mech. Phys. Solids 25, 309–338 (1997)

    Article  Google Scholar 

  26. Harren, S., Lowe, T.C., Asaro, R.J., Needleman, A.: Analysis of large strain shear in rate dependent face centered cubic polycrystals: correlation of micro-and macromechanics. Philos. Trans. R. Soc. London A 238, 443 (1989)

    Google Scholar 

  27. Cao, G., Fu, L., Lin, J., Zhang, Y., Chen, C.: The relationships of microstructure and properties of a fully lamellar Ti-Al alloy. Intermetallics 8, 647–653 (2000)

    Article  CAS  Google Scholar 

  28. Li, J., Chou, Y.: The role of dislocations in the flow stress grain size relationships. Metall. Trans. 3, 1145 (1970)

    Google Scholar 

  29. Eshelby, J.D.: The distribution of dislocations in an elliptical glide zone. Phys. Status Solids 3, 2057 (1963)

    Article  Google Scholar 

  30. Semiatin, S.L., Bieler, T.R.: The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure. Acta Mater. 49, 3565 (2001)

    Article  CAS  Google Scholar 

  31. Manchiraju, S., Asai, M., Ghosh, S.: A dual-time-scale finite element model for simulating cyclic deformation of polycrystalline alloys. J. Strain Anal. Eng. Des. 42, 183–200 (2007)

    Article  Google Scholar 

  32. Sinha, V., Spowart, J.E., Mills, M.J., Williams, J.C.: Observations on the faceted initiation site in the dwell-fatigue tested Ti-6242 alloy: crystallographic orientation and size effects. Metall. Mater. Trans. A 37A, 1507 (2006)

    Article  CAS  Google Scholar 

  33. MSC-MARC Reference Manuals, MSC. Software Corporation (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somnath Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manchiraju, S., Kirane, K. & Ghosh, S. Dual-time scale crystal plasticity FE model for cyclic deformation of Ti alloys. J Computer-Aided Mater Des 14 (Suppl 1), 47–61 (2007). https://doi.org/10.1007/s10820-007-9077-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-007-9077-6

Keywords

Navigation