Skip to main content
Log in

Discrete size series of CdSe quantum dots: a combined computational and experimental investigation

  • Original Paper
  • Published:
Journal of Computer-Aided Materials Design

Abstract

Ab initio computational studies were performed for CdSe nanocrystals (NCs) over a wide variety of sizes ranging from 8 to 150 atoms in conjunction with recent experimental work. The density functional based calculations indicate substantial relaxations. Changes in coordination of surface atoms were found to play a crucial role in determining the NC stability and optical properties. While optimally (threefold) coordinated surface atoms resulted in stable closed-shell structures with large optical gaps, sub-optimal coordination gave rise to lower stability and negligible optical gaps. These computations are in qualitative agreement with recent chemical etching experiments suggesting that closed shell NCs contribute strongly to photoluminescence quantum yield while clusters with nonoptimal surface coordination do not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murray C.B., Kagan C.R., Bawendi M.G. (2000). Annu. Rev. Mater. Sci. 30: 545

    Article  CAS  Google Scholar 

  2. Alivisatos A.P. (1996). J. Phys. Chem. 100: 13226

    Article  CAS  Google Scholar 

  3. Chan W.CW., Maxwell D.J., Gao X., Bailey R.E., Han M., Nie S. (2002). Curr. Opin. Biotechnol. 13: 40

    Article  CAS  Google Scholar 

  4. Han M., Gao X., Su J.Z., Nie S. (2001). Nat. Biotechnol. 19: 631

    Article  CAS  Google Scholar 

  5. Klimov V.I., Mikhailovsky A.A., Xu S., Malko A., Hollingsworth J.A., Leatherdale C.A., Eisler H.J. Bawendi M.G. (2000). Science 290, 314

    Article  CAS  Google Scholar 

  6. Ispasoiu R.G., Lee J., Papadimitrakopoulos F., Goodson T. III (2001). Chem. Phys. Lett. 340: 7

    Article  CAS  Google Scholar 

  7. Ispasoiu R.G., Jin Y., Lee J., Papadimitrakopoulos F., Goodson T. III (2002). Nano Lett. 2: 127

    Article  CAS  Google Scholar 

  8. Huynh W.U., Dittmer J.J., Alivisatos A.P. (2002). Science 295: 2425

    Article  CAS  Google Scholar 

  9. Peng X., Wickham J., Alivisatos A.P. (1998). J. Am. Chem. Soc. 120: 5343

    Article  CAS  Google Scholar 

  10. Talapin D.V., Rogach A.L., Kornowski A., Haase M., Weller H. (2001). Nano. Lett. 1: 207

    Article  CAS  Google Scholar 

  11. Li R., Lee J., Yang B., Horspool D.N., Aindow M., Papadimitrakopoulos F. (2005). J. Am. Chem. Soc. 127: 2524

    Article  CAS  Google Scholar 

  12. Li R., Lee J., Kang D., Luo Z., Aindow M., Papadimitrakopoulos F. (2006). Adv. Funct. Mater. 16: 345

    Article  CAS  Google Scholar 

  13. Talapin D.V., Rogach A.L., Shevchenko E.V., Kornowski A., Haase M., Weller H. (2002). J. Am. Chem. Soc. 124: 5782

    Article  CAS  Google Scholar 

  14. Sarkar P., Springborg M. (2003). Phys. Rev. B 68: 235409

    Article  Google Scholar 

  15. Rabani E. (2001). J. Chem. Phys. 115: 1493

    Article  CAS  Google Scholar 

  16. Eichkorn K., Alrichs R. (1998). Chem. Phys. Lett. 288: 235

    Article  CAS  Google Scholar 

  17. Wang L.W., Zunger A. (1996). Phys. Rev. B 53: 9579

    Article  CAS  Google Scholar 

  18. Pokrant S., Whaley K.B. (1999). Eur. Phys. J. D 6: 255

    Article  CAS  Google Scholar 

  19. Puzder A., Williamson A.J., Gygi F., Galli G. (2004). Phys. Rev. Lett. 92: 217401

    Article  Google Scholar 

  20. Kasuya A., et al. (2004). Nature 3: 99

    Article  CAS  Google Scholar 

  21. Troparevsky M.C., Kronik L., Chelikowsky J.R. (2002). Phys. Rev. B 65: 033311

    Article  Google Scholar 

  22. Martin R. (2004) Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, New York

    Google Scholar 

  23. Soler J.M., Artacho E., Gale J., Garcia A., Junquera J., Ordejon P., Sanchez-Portal D. (2002). J. Phys.: Condens. Matter 14: 2745

    Article  CAS  Google Scholar 

  24. Troullier N., Martins J.L. (1991). Phys. Rev. B 43: 1993

    Article  CAS  Google Scholar 

  25. Zakharov O., Rubio A., Blasé X., Cohen M.L., Louie S.G. (1994). Phys. Rev. B 50: 10780

    Article  CAS  Google Scholar 

  26. Hellwege, K.-H., Madelung, O.: Numerical Data and Functional Relationships in Science and Technology, Landolt-Bornstein, New Series, Group III, vol. 17a, 22a. Springer, Berlin Heidelberg, New York (1982)

  27. Brus L.E. (1986). J. Phys. Chem. 90: 2555

    Article  CAS  Google Scholar 

  28. Peng Z.A., Peng X. (2002). J. Am. Chem. Soc. 124: 3343

    Article  CAS  Google Scholar 

  29. Soloviev V.N., Eichhöfer A., Fenske D., Banin U. (2000). J. Am. Chem. Soc. 122: 2673

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramprasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, M., Fernando, G.W., Li, R. et al. Discrete size series of CdSe quantum dots: a combined computational and experimental investigation. J Computer-Aided Mater Des 14, 167–174 (2007). https://doi.org/10.1007/s10820-006-9040-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-006-9040-y

Keywords

Navigation