Skip to main content
Log in

Dipole and solenoidal magnetic moments of electronic surface currents on toroidal nanostructures

  • Original Paper
  • Published:
Journal of Computer-Aided Materials Design

Abstract

The time-dependent Schrödinger equation is developed for a spinless electron which is confined to move on a toroidal surface and curvature effects are taken into account. The electron motion is driven by linearly or circularly polarized microwaves including an interference field. To calculate the magnetic moments which are induced by the electronic surface currents on the torus an eight-state basis set is used. The system is driven at a resonance frequency to allow for transitions between states with opposite θ-parity. Optical transitions into modes of excitation can be observed that correspond to a magnetic dipole term parallel to the toroidal central symmetry axis as well as additional components in radial and azimuthal direction (solenoidal modes). Size and relative magnitude of the different components can be steered by adjusting magnitude, polarization, and phase information of the microwave field. Substantial enhancements of the solenoidal magnetic modes versus the dipole mode can be observed when adding a sufficiently strong static magnetic field parallel to the symmetry axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shapiro M., Brumer P. (2003) Principles of the Quantum Control of Molecular Processes. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  2. Borzi A., Stadler G., Hohenester U. (2002) Optimal quantum control in nanostructures: Theory and application to a generic three-level system. Phys. Rev. A 66, 053811–6

    Article  Google Scholar 

  3. Pötz W. (1998) Coherent control of terahertz radiation from semiconductor nanostructures. Appl. Phys. Lett. 72, 3002–3004

    Article  Google Scholar 

  4. Qin H., van der Weide D.W., Truitt J., Eberl K., Blick R.H. (2003) Electron dynamics of an artificial atom probed by pulsed microwave spectroscopy. Nano. 14, 60–64

    Article  CAS  Google Scholar 

  5. Oosterkamp T.H., Fujisawa T., van der Wiel W.G., Ishibashi K., Hijman R.V., Tarucha S., Kouwenhoven L.P. (1998) Microwave spectroscopy on a quantum-dot molecule. Nature 395, 873–876

    Article  CAS  Google Scholar 

  6. Pershin Y.V., Piermarocchi C. (2005) Laser-controlled local magnetic field with semiconductor quantum rings. Phys. Rev. B 72, 245331–5

    Article  Google Scholar 

  7. Pershin Y.V., Piermarocchi C. (2005) Persistent and radiation-induced currents in distorted quantum rings. Phys. Rev. B 72, 125348–7

    Article  Google Scholar 

  8. Sasaki K., Kawazoe Y., Saito R. (2004) Aharonov-Bohm effect in higher genus materials. Phys. Lett. A 321, 369–375

    Article  CAS  Google Scholar 

  9. Sasaki K., Kawazoe Y., Saito R. (2004) Fractional flux periodicity in tori made of square lattice. Prog. Theor. Phys. 112,369–382

    Article  CAS  Google Scholar 

  10. Simonin J., Proetto C.R., Barticevic Z., Fust G. (2004) Single-particle electronic spectra of quantum rings: A comparative study. Phys. Rev. B. 70, 205305–8

    Article  Google Scholar 

  11. Viefers S., Koskinen P., Singha Deo P., Manninen M. (2004) Quantum rings for beginners: Energy spectra and persistent currents. Physica E. 21(1): 1–35

    Article  Google Scholar 

  12. Encinosa M., Lonnie Mott L. (2003) Curvature-induced toroidal bound states. Phys. Rev. A 68, 014102–4

    Article  Google Scholar 

  13. Encinosa M., Mott L., Etemadi B. (2005) Wave functions in the neighborhood of a toroidal surface; Hard vs. Soft constraint. Phys. Scr. 72, 13–15

    Article  CAS  Google Scholar 

  14. Garcia J.M., Medeiros-Ribeiro G., Schmidt K., Ngo T., Feng J.L., Lorke A., Kotthaus J., Petroff P.M. (1997) Intermixing and shape changes during the formation of InAs self-assembled quantum dots. Appl. Phys. Lett. 71, 2014–2016

    Article  CAS  Google Scholar 

  15. Lorke A., Böhm S., Wegscheider W. (2003) Curved two-dimensional electron gases. Superlattices Micro. 33, 347–356

    Article  CAS  Google Scholar 

  16. Lorke A., Luyken R.J., Govorov A.O., Kotthaus J.P., Garcia J.M., Petroff P.M. (2000) Spectroscopy of Nanoscopic Semiconductor Rings. Phys. Rev. Lett. 84, 2223–2226

    Article  CAS  Google Scholar 

  17. Zhang H., Chung S.W., Mirkin C.A. (2003) Fabrication of Sub-50-nm solid-state nanostructures on the basis of Dip-Pen nanolithography. Nano Lett. 3, 43–45

    Article  CAS  Google Scholar 

  18. Encinosa M., Jack M. (2006) Elliptical tori in a constant magnetic field. Phys. Scr. 73, 439–442

    Article  CAS  Google Scholar 

  19. Burgess M., Jensen B. (1993) Fermions near two-dimensional surfaces. Phys. Rev. A 48, 1861–1868

    Article  CAS  Google Scholar 

  20. Jensen H., Koppe H. (1971) Quantum mechanics with constraints. Ann. Phys. 63, 2586–2591

    Google Scholar 

  21. da Costa R.C.T. (1981) Quantum mechanics of a constrained particle. Phys. Rev. A 23, 1982–1987

    Article  CAS  Google Scholar 

  22. da Costa R.C.T. (1982) Constraints in quantum mechanics. Phys. Rev. A 25, 2893–2900

    Article  Google Scholar 

  23. Matsutani S. (1992) Path integral formulation of curved low dimensional space. J. Phys. Soc. Jap. 61, 55–63

    Article  Google Scholar 

  24. Goldstone J., Jaffe R.L. (1992) Bound states in twisting tubes. Phys. Rev. B 45, 14100–14107

    Article  Google Scholar 

  25. Exner P., Seba P. (1989) Bound states in curved quantum waveguides. J. Math. Phys. 30, 2574–2580

    Article  Google Scholar 

  26. Schuster P.C., Jaffe R.L. (2003) Quantum mechanics on manifolds embedded in Euclidean space. Ann. Phys. 307, 132–143

    Article  CAS  Google Scholar 

  27. Encinosa E. (2006) Coupling curvature to a uniform magnetic field: An analytic and numerical study. Phys. Rev. A 73, 012102–6

    Article  Google Scholar 

  28. Encinosa, M., Jack, M.: Excitation of surface dipole and solenoidal modes on toroidal, arXive:physics/0604214. Photon. Nanostruct (submitted)

  29. Encinosa, M.: A note regarding Gram-Schmidt states on T 2, arXive:physics/0501161

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Encinosa, M., Jack, M. Dipole and solenoidal magnetic moments of electronic surface currents on toroidal nanostructures. J Computer-Aided Mater Des 14, 65–71 (2007). https://doi.org/10.1007/s10820-006-9036-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-006-9036-7

Keywords

PACS numbers

Navigation