Skip to main content
Log in

An experimentally justified confining potential for electrons in two-dimensional semiconductor quantum dots

  • Original Paper
  • Published:
Journal of Computer-Aided Materials Design

Abstract

We propose a confinement potential for electrons in a two-dimensional (2D) quantum dot that is more physically motivated and better experimentally justified than the commonly used infinite range parabolic potential or few other choices. Because of the specific experimental setup in a 2D quantum dot involving application of gate potentials, an area of electron depletion is created near the gate. The resulting positively charged region can be most simply modeled as a uniformly charged 2D disk of positive background charge. Within this experimental setup, the individual electrons in the dot feel a confinement potential originating from the uniformly positively charged 2D background disk. Differently from the infinitely high parabolic confinement potential, the resulting 2D charged disk potential has a finite depth. The resulting 2D charged disk potential has a form that can be reasonably approximated as a parabolic potential in the central region of the dot (for low energy states of the electrons) and as a Coulomb potential (that becomes zero at large distances). We study the electronic properties of the 2D charged disk confinement potential by means of the numerical diagonalization method and compare the results to the case of 2D quantum dots with a pure parabolic confinement potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jacak L., Hawrylak P., Wojs A. (1997) Quantum Dots. Springer, Berlin

    Google Scholar 

  2. Tarucha S., Austing D.G., Honda T., van der Hage R.J., Kouwenhoven L.P. (1996). Shell filling and spin effects in a few electron quantum dot. Phys. Rev. Lett. 77, 3613–3616

    Article  CAS  Google Scholar 

  3. Ashoori R.C., Stormer H.L., Weiner J.S., Pfeiffer L.N., Baldwin K.W., West K.W. (1993). N-electron ground state energies of a quantum dot in magnetic field. Phys. Rev. Lett. 71, 613–616

    Article  CAS  Google Scholar 

  4. Maksym P.A., Chakraborty T. (1990). Quantum dots in a magnetic field: Role of electron-electron interactions. Phys. Rev. Lett. 65, 108–111

    Article  CAS  Google Scholar 

  5. Merkt U., Huser J., Wagner M. (1991). Energy spectra of two electrons in a harmonic quantum dot. Phys. Rev. B 43, 7320–7323

    Article  Google Scholar 

  6. Pfannkuche D., Gerhardts R.R. (1991). Quantum-dot helium: Effects of deviations from a parabolic confinement potential. Phys. Rev. B 44, 13132–13135

    Article  Google Scholar 

  7. MacDonald A.H., Johnson M.D. (1993). Magnetic oscillations of a fractional Hall dot. Phys. Rev. Lett. 70, 3107–3110

    Article  Google Scholar 

  8. Pfannkuche D., Gudmundsson V., Maksym P.A. (1993). Comparison of a Hartree, a Hartree-Fock, and an exact treatment of quantum-dot helium. Phys. Rev. B 47, 2244–2250

    Article  CAS  Google Scholar 

  9. Yannouleas C., Landman U. (2000). Collective and independent-particle motion in two-electron artificial atoms. Phys. Rev. Lett. 85, 1726–1729

    Article  CAS  Google Scholar 

  10. Tavernier, M.B., Anisimovas, E., Peeters, F.M.: Correlation between electrons and vortices in quantum dots. Phys. Rev. B 70, 155321-1–155321-8 (2004).

    Google Scholar 

  11. Tavernier, M.B., Anisimovas, E., Peeters, F.M., Szafran, B., Adamowski, J., Bednarek, S.: Four-electron quantum dot in a magnetic field. Phys. Rev. B 68, 205305-1–205305-9 (2003).

    Google Scholar 

  12. Drouvelis, P.S., Schmelcher, P., Diakonos, F.K.: Probing the shape of quantum dots with magnetic fields. Phys. Rev. B 69, 155312-1–155312-5 (2004).

    Google Scholar 

  13. Drouvelis P.S., Schmelcher P., Diakonos F.K. (2003). Two-electron anisotropic quantum dots. Europhys. Lett. 64, 232–238

    Article  CAS  Google Scholar 

  14. Maksym P.A. (1996). Eckardt frame theory of interacting electrons in quantum dots. Phys. Rev. B 53, 10871–10886

    Article  CAS  Google Scholar 

  15. Bolton F. (1996). Fixed-phase quantum Monte Carlo method applied to interacting electrons in a quantum dot. Phys. Rev. B54, 4780-4793

    Article  CAS  Google Scholar 

  16. Kainz, J., Mikhailov, S.A., Wensauer, A., Rössler, U.: Quantum dots in high magnetic fields: Calculation of ground state properties. Phys. Rev. B 65, 115305-1–115305-5 (2002).

    Google Scholar 

  17. Harju, A., Siljamäki, S., Nieminen, R.M.: Wigner molecules in quantum dots: A quantum Monte Carlo study. Phys. Rev. B 65, 075309-1–075309-6 (2002).

    Google Scholar 

  18. Partoens B., Peeters F.M. (2000). Molecule-type phases and Hund’s rule in vertically coupled quantum dots. Phys. Rev. Lett. 84, 4433–4436

    Article  CAS  Google Scholar 

  19. Adamowski J., Sobkowicz M., Szafran B., Bednarek S. (2000). Electron pair in a Gaussian confining potential. Phys. Rev. B 62, 4234–4237

    Article  CAS  Google Scholar 

  20. De Filippo S., Salerno M. (2000). Spectral properties of a model potential for quantum dots with smooth boundaries, Phys. Rev. B 62, 4230–4233

    Article  CAS  Google Scholar 

  21. Stopa M (1996). Quantum dot self-consistent electronic structure and the Coulomb blockade. Phys. Rev. B 54, 13767–13783

    Article  CAS  Google Scholar 

  22. Ciftja, O., Wexler, C.: Monte Carlo simulation method for Laughlin-like states in a disk geometry. Phys. Rev. B 67, 075304-1–075304-8 (2003).

    Google Scholar 

  23. For the definition of complete elliptic integral of the second kind and hypergeometric functions, see Chapter 5 and Chapter 13 of: Mathematical Methods For Physicists, Fifth Edition, George B. Arfken and Hans J. Weber, Academic Press (2001).

  24. Ciftja, O., Anil Kumar, A.: Ground state of two-dimensional quantum-dot helium in zero magnetic field: Perturbation, diagonalization, and variational theory. Phys. Rev. B 70, 205326-1–205326-8 (2004).

    Google Scholar 

  25. Ciftja, O., Faruk, M.G.: Two-dimensional quantum-dot helium in a magnetic field: Variational theory. Phys. Rev. B 72, 205334-1–205334-10 (2005).

    Google Scholar 

  26. Petta, J.R., Johnson, A.C., Yacoby, A., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Pulsed-gate measurements of the singlet-triplet relaxation time in a two-electron double quantum dot. Phys. Rev. B 72, 161301-1–161301-4(R) (2005).

    Google Scholar 

  27. A. C. Johnson, J. R. Petta, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Singlet-triplet spin blockade and charge sensing in a few-electron double quantum dot. Phys. Rev. B 72, 165308-1–165308-7 (2005).

    Google Scholar 

  28. Mourokh, L.G., Smirnov, A.Y.: Negative differential conductivity and population inversion in the double-dot system connected to three terminals. Phys. Rev. B 72, 033310-1–033310-4 (2005).

    Google Scholar 

  29. Helle, M., Harju, A., Nieminen, R.M.: Two-electron lateral quantum-dot molecules in a magnetic field. Phys. Rev. B 72, 205329-1–205329-24 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orion Ciftja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciftja, O. An experimentally justified confining potential for electrons in two-dimensional semiconductor quantum dots. J Computer-Aided Mater Des 14, 37–44 (2007). https://doi.org/10.1007/s10820-006-9035-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-006-9035-8

PACS Numbers

Keywords

Navigation