Skip to main content
Log in

Evaluation of interactions between functionalised multi-walled carbon nanotubes and ligand-stabilised gold nanoparticles using surface element integration

  • Original Paper
  • Published:
Journal of Computer-Aided Materials Design

Abstract

We report here on the application of Surface Element Integration (SEI) to evaluate the potential energy of interactions between alkane-modified multiwalled carbon nanotubes (MWCNTs) and tetraoctylammonium bromide (TOAB) stabilised gold nanoparticles. The interacting objects are treated as cylinders and spheres, respectively, with corresponding alkyl chains extending perpendicularly from their surfaces. In such case the widely used Derjaguin approximation is invalid. Thus SEI was used to calculate the van der Waals, osmotic and elastic interactions. The results show that it is possible to control the self-assembly process of the gold nanoparticles at the surface of modified MWCNT in terms of size- and type-selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katz, E., Shipway, A.N., Willner, I.: Functionalized metal nanoparticles: synthesis, properties and applications. In: Liz-Marzan, L.M., Kamat, P. (eds.) Nanoscale Materials. Kluwer, (2003).

  2. Daniel M.-C., Astruc D. (2004) Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 104, 293–346

    Article  CAS  Google Scholar 

  3. (a) Frank, S., Poncharal, P., Wang, Z.L., de Heer, W.A.: Carbon nanotube quantum resistors. Science 280, 1744 –1746 (1998) (b) Collins, P.G., Arnold, M.S., Avouris, P.: Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001) (c) Tans, S.J., Verschueren, A.R.M., Dekker, C.: Roomtemperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998) (d) Kong, J., Franklin, N.R., Zhou, C., Chaplin, M.G., Peng, S., Cho, K., Dai, H.: Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000)

    Google Scholar 

  4. (a) McConnell, W.P., Novak, J.P., Brousseau, III, L.C., Fuierer, R.R., Tenent, R.C., Feldheim, D.L.: Electronic and optical properties of chemically modified metal nanoparticles and molecularly bridged nanoparticle arrays. J. Phys. Chem. B 104, 8925–8930 (2000) (b) Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J.: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996) (c) Storhoff, J.J., Elghanian, R., Mucic, R.C., Mirkin, C.A., Letsinger, R.L.: One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120, 1959–1964 (1998) (d) Fuhrer, M.S., Nygård, J., Shih, L., Forero, M., Yoon, Y.G., Mazzoni, M.S.C., Choi, H.J., Ihm, J., Louie, S.G., Zettl, A., McEuen, P.L.: Crossed nanotube junctions. Science 288, 494–497 (2000) (e) Yao, Z., Postma, H.W.C., Balents, L., Dekker, C.: Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999)

    Google Scholar 

  5. Thelander C., Magnusson M.H., Deppert K., Samuelson L., Poulsen P.R., Nygård J., Borggreen J. (2001) Gold nanoparticle single-electron transistor with carbon nanotube leads. Appl. Phys. Lett. 79, 2106–2108

    Article  CAS  Google Scholar 

  6. Han L.,Wu W., Kirk F.L., Luo J., Maye M.M., Kariuki N.N., Lin Y., Wang C., Zhong C.-J. (2004) A Direct Route toward Assembly of Nanoparticle-Carbon Nanotube Composite Materials. Langmuir 20, 6019–6025

    Article  CAS  Google Scholar 

  7. Ye, X.R., Lin, Y., Wai, C.M.: Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. Chem. Commun. 642–643 (2003)

  8. Fullam S., Cottel D., Rensmo H., Fitzmaurice D. (2000) Carbon nanotube templated self-assembly and thermal processing of gold nanowires. Adv. Mat. 12, 1430–1432

    Article  CAS  Google Scholar 

  9. Sainsbury T., Stolarczyk J., Fitzmaurice D. (2005) An experimental and theoretical study of the self-assembly of gold nanoparticles at the surface of functionalized multiwalled carbon nanotubes. J. Phys. Chem. B 109: 16310–16325

    Article  CAS  Google Scholar 

  10. Israelachvili J. (1992) Intermolecular & Surface Forces, 2nd edn. Academic Press, San Diego

    Google Scholar 

  11. Bhattacharjee S., Elimelech M. (1997) Surface element integration: A novel technique for evaluation of DLVO interaction between a particle and a flat plate. J. Colloid Interface Sci. 193, 273–285

    Article  CAS  Google Scholar 

  12. Bhattacharjee S., Elimelech M., Borkovec M. (1998) DLVO interaction between colloidal particles: Beyond Derjaguin’s approximation. Croatia Chemica Acta 71, 883–903

    CAS  Google Scholar 

  13. Smitham J.B., Evans R., Napper D.H. (1975) Analytical theories of steric stabilization of colloidal dispersions. J.C.S. Faraday I 71, 285–297

    Article  CAS  Google Scholar 

  14. Evans R., Napper D.H. (1977) Perturbation method for incorporating concentration-dependence of Flory- Huggins parameter into theory of steric stabilization. J.C.S. Faraday I. 73, 1377–1385

    Article  CAS  Google Scholar 

  15. Vincent B., Edwards J., Emmett S., Jones A. (1986) Depletion flocculation in dispersions of sterically-stabilized particles (soft spheres). Colloids Surfaces 18, 261–281

    Article  CAS  Google Scholar 

  16. Shah P.S., Husain S., Johnston K., Korgel B.A. (2002) Role of steric stabilization on the arrested growth of silver nanocrystals in supercritical carbon dioxide. J. Phys. Chem. 106, 12178–12185

    CAS  Google Scholar 

  17. Kitchens C.L., McLeod M.C., Roberts C.B. (2003) Solvent Effects on the Growth and Steric Stabilization of Copper Metallic Nanoparticles in AOT Reverse Micelle Systems. J. Phys. Chem. B 107, 11331–11338

    Article  CAS  Google Scholar 

  18. Tirado-Miranda M., Schmitt A., Callejas-Fernandez J., Fernandez-Barbero A. (2003) Aggregation of protein-coated colloidal particles: Interaction energy, cluster morphology, and aggregation kinetics. J. Chem. Phys. B. 119, 9251–9259

    Article  CAS  Google Scholar 

  19. White L.R. (1983) On the Deryaguin approximation for the interaction of macrobodies. J. Colloid Interface Sci. 95, 286–288

    Article  CAS  Google Scholar 

  20. Goodman F.O., Garcia N. (1991) Roles of the attractive and repulsive forces in atomic-force microscopy. Phys. Rev. B 43, 4728–4731

    Article  Google Scholar 

  21. Akita S., Nishijiama H., Nakayama Y. (2000) Influence of stiffness of carbon-nanotube probes in atomic force microscopy. J. Phys. D: Appl. Phys. 33, 2673–2677

    Article  CAS  Google Scholar 

  22. Sigman Jr., M.B., Saunders A.E., Korgel B.A. (2004) Metal Nanocrystal Superlattice Nucleation and Growth. Langmuir 20: 978–983

    Article  CAS  Google Scholar 

  23. Meier D.J. (1967) Theory of polymeric dispersants. Statistics of constrained polymer chains. J. Phys. Chem. 71, 1861–1868

    Article  CAS  Google Scholar 

  24. Barton A.F.M. (1975) Solubility parameters. Chem. Rev. 75, 731–753

    Article  CAS  Google Scholar 

  25. Flory P.J. (1953) Principles of Polymer Chemistry. Cornell Univ. Press, New York

    Google Scholar 

  26. Fink J., Kiely C.J., Bethell D., Schiffrin D. (1998) Self-organization of nanosized gold particles. Chem. Mater. 10, 922–926

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek K. Stolarczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolarczyk, J.K., Sainsbury, T. & Fitzmaurice, D. Evaluation of interactions between functionalised multi-walled carbon nanotubes and ligand-stabilised gold nanoparticles using surface element integration. J Computer-Aided Mater Des 14, 151–165 (2007). https://doi.org/10.1007/s10820-006-9027-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-006-9027-8

Keywords

Navigation