Skip to main content

Advertisement

Log in

Ecological-economic modeling of pollination complexity and pesticide use in agricultural crops

  • Published:
Journal of Bioeconomics

Abstract

Recent years have witnessed a substantial decline of both managed and wild bees in Europe due to the increase of pesticides use. Hence, many European agricultural systems depend on the buy/rental of managed bees in order to maintain sufficient levels of pollination services. However, this substitution of wild bees by managed ones apart from costly may be also ineffective as managed bees are not perfect substitutes for wild ones. In fact, a plethora of ecological studies showed that the presence of both bee species in the field and their complementarity effect generates an enhanced pollination activity which optimizes production. This study tries to evaluate this effect by developing an analytical ecological-economic model displaying farmer’s decisions between two agricultural inputs, pollination services and pesticides. Our results highlight that the economic value of this complementarity may offer to farmers an alternative optimum management strategy. This strategy lies on the production range where managed bees are working together with wild ones, offering an enhanced pollination to the crop production. Moreover, we showed that the adoption of a less toxic pesticide or better application methods by the farmers should increase the wild bees’ productivity and consequently, the total economic value of pollinators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

By request.

Notes

  1. For the numerical values of α we followed the article of Greenleaf & Kreman (2006), which showed that the presence of wild bees’ increases the pollination efficiency of managed ones up to 5 times. Having in mind this significant increase, we conservatively assumed that for medium levels of bees’ complementarity α = 1.1 and for high levels α=1.2.

  2. $$\Delta =\left(\frac{-\rm {ln}\overline{y}-\alpha \rm {ln}\left(-\frac{{c}_{B}l}{\alpha (-1+l)({c}_{C}k+rg\varphi {C}_{B})}\right)+l\alpha \rm {ln}\left(-\frac{{c}_{B}l}{\alpha (-1+l)({c}_{C}k+rg\varphi {C}_{B})}\right)l}{-l-\alpha +\alpha l}\right)$$
  3. http://www.mp.chambagri.fr/.

References

  • Aizen, M. A., & Harder, L. D. (2009). The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Current Biology, 19(11), 915–918. https://doi.org/10.1016/j.cub.2009.03.071

    Article  Google Scholar 

  • Alaux, C., Boutot, M., Jaisson, P., & Hefetz, A. (2007). Reproductive plasticity in bumblebee workers (Bombus terrestris)—reversion from fertility to sterility under queen influence. Behavioral Ecology and Sociobiology, 62, 213–222.

    Article  Google Scholar 

  • Alaux, C., Brunet, J. L., Dussaubat, C., Mondet, F., Tchamitchan, S., & Cousin Le Conte, M. Y. (2010). Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environmental Microbiology, 12(3), 774–782. https://doi.org/10.1111/j.1462-2920.2009.02123.x

    Article  Google Scholar 

  • Allsopp, M. H., de Lange, W. J., & Veldtman, R. (2008). Valuing insect pollination services with cost of replacement. PLoS ONE, 3(9), e3128. https://doi.org/10.1371/journal.pone.0003128

    Article  Google Scholar 

  • Bartomeus, I., Potts, S. G., Steffan-Dewenter, I., Vaissière, B. E., Woyciechowski, M., Krewenka, K. M., & Bommarco, R. (2014). Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ, 2, e328. https://doi.org/10.7717/peerj.328

    Article  Google Scholar 

  • Batáry, P., Dicks, L. V., Kleijn, D., & Sutherland, W. J. (2015). The role of agri-environment schemes in conservation and environmental management. Conservation Biology, 29(4), 1006–1016. https://doi.org/10.1111/cobi.12536

    Article  Google Scholar 

  • Breeze, T. D., Dean, R., & Potts, S. G. (2017). The costs of beekeeping for pollination services in the UK – an explorative study. Journal of Apicultural Research, 8839(April), 1–8. https://doi.org/10.1080/00218839.2017.1304518

    Article  Google Scholar 

  • Brittain, C., Williams, N., Kremen, C., & Klein, A. (2013). Synergistic effects of non-Apis bees and honey bees for pollination services. Proceedings. Biological Sciences/The Royal Society, 280(1754), 20122767. https://doi.org/10.1098/rspb.2012.2767

    Article  Google Scholar 

  • Bryden, J., Gill, R. J., Mitton, R. A. A., Raine, N. E., & Jansen, V. A. A. (2013). Chronic sublethal stress causes bee colony failure. Ecology Letters, 16(12), 1463–1469. https://doi.org/10.1111/ele.12188

    Article  Google Scholar 

  • Carreck, N. L., Williams, I. H., & Little, D. J. (1997). The Movement of honey bee colonies for crop pollination and honey production by beekeepers in Great Britain. Bee World, 78, 67–77.

    Article  Google Scholar 

  • Chabert, S., Conjeaud, J., & Vaissière, B. (2015). Polapis: vers une conduite raisonnée de la pollinisation entomophile. Bulletins Semences, 245, 47–51.

  • Cox-Foster, D. L., Conlan, S., Holmes, E. C., Palacios, G., Evans, J. D., Moran, N. A., et al. (2007). A metagenomic survey of microbes in honey bee colony collapse disorder. Science, 318, 283–287.

    Article  Google Scholar 

  • De Groot, R. (2006). Function-analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multi-functional landscapes. Landscape and Urban Planning, 75(3–4), 175–186. https://doi.org/10.1016/j.landurbplan.2005.02.016

    Article  Google Scholar 

  • Defrancesco, E., Gatto, P., Runge, F., & Trestini, S. (2008). Factors affecting farmers’ participation in agri-environmental measures: A northern Italian perspective. Journal of Agricultural Economics, 59(1), 114–131.

    Google Scholar 

  • Díaz, S., Demissew, S., Carabias, J., Joly, C., Lonsdale, M., Ash, N., & Zlatanova, D. (2015). The IPBES Conceptual Framework - connecting nature and people. Current Opinion in Environmental Sustainability, 14, 1–16. https://doi.org/10.1016/j.cosust.2014.11.002

    Article  Google Scholar 

  • Dicks, L. V., Viana, B., Bommarco, R., Brosi, B., Arizmendi, C., Cunningham, S. A., & Taki, H. (2016). What governments can do to safeguard pollination services. Science, 354(6315), 14–15. https://doi.org/10.1126/science.aai9226

    Article  Google Scholar 

  • Doyen, L., Cissé, A., Gourguet, S., Mouysset, L., Hardy, P.-Y., Béné, C., Blanchard, F., Jigue, F., Péreau, J.-C., & Thébaud, O. (2013). Ecological-economic modelling for the sustainable management of biodiversity. Computational Management Science, 10(4), 353–364. https://doi.org/10.1007/s10287-013-0194-2

    Article  Google Scholar 

  • Ducros, D. (2005). Mixed Crop Livestock Farming Incorporating Agroforestry Orchards Facing the New Cap Mixed Crop Livestock Farming Incorporating Agroforestry Orchards.

  • Ellis, C. (2016) Valuing Wild Pollinators for Sustainable Crop Production. PhD thesis, University of Stirling.

  • Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S. A., & Klein, A. M. (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 339(6127), 1608–1611. https://doi.org/10.1126/science.1230200

    Article  Google Scholar 

  • Gaujour, E., Amiaud, B., Mignolet, C., & Plantureux, S. (2012). Factors and processes affecting plant biodiversity in permanent grasslands. A Review. Agronomy for Sustainable Development, 32(1), 133–160. https://doi.org/10.1007/s13593-011-0015-3

    Article  Google Scholar 

  • Gill, R. J., Ramos-Rodriguez, O., & Raine, N. E. (2012). Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature, 491(7422), 105–108. https://doi.org/10.1038/nature11585

    Article  Google Scholar 

  • Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. SciencExpress, 2010, 1–16. https://doi.org/10.1126/science.1255957

    Article  Google Scholar 

  • Gravelle, H., & Rees, R. (2004). Microeconomics. http://eprints.whiterose.ac.uk/72753/

  • Greenleaf, S. S., & Kremen, C. (2006). Wild bees enhance honey bees’ pollination of hybrid sunflower, (Track II)

  • Grimal, L., & Képhaliacos, Ch. (2000). Internalization of external effects versus decrease of externalities: From end of pipe technologies to cleaner technologies. International Journal of Sustainable Development, 3(3), 239–256.

    Article  Google Scholar 

  • Gross, M. (2014). Systemic pesticide concerns extend beyond the bees. Current Biology, 24(16), R717–R720. https://doi.org/10.1016/j.cub.2014.07.071

    Article  Google Scholar 

  • Hazell, P.B.R & Norton, R.D. Mathematical Programming for Economic Analysis in Agricutlure (Macmillan Publishing Company, New York, 1986)

  • Henselek, Y., Klein, A.-M., & Baumgärtner, S. (2016). The economic insurance value of wild pollinators in almond orchards in California. Nachwuchsworkshop Des AURÖ Des Vereins Für Socialpolitik, Leipzig. internal-pdf://184.70.129.177/2016_Henselek_The economic insurance value of.pdf

  • Hoehn, P., Tscharntke, T., Tylianakis, J. M., & Steffan-Dewenter, I. (2008). Functional group diversity of bee pollinators increases crop yield. Proceedings of the Royal Society b: Biological Sciences, 275(1648), 2283–2291. https://doi.org/10.1098/rspb.2008.0405

    Article  Google Scholar 

  • Kleczkowski, A., Ellis, C., Hanley, N., & Goulson, D. (2017). Pesticides and bees: Ecological-economic modelling of bee populations on farmland. Ecological Modelling, 360, 53–62. https://doi.org/10.1016/j.ecolmodel.2017.06.008

    Article  Google Scholar 

  • Kleftodimos, G., Gallai, N., Rozakis, S., & Képhaliacos, Ch. (2021). Land Use Policy A farm-level ecological-economic approach of the inclusion of pollination services in arable crop farms. 107.https://doi.org/10.1016/j.landusepol.2021.105462

  • Klein, A.-M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings. Biological Sciences/The Royal Society, 274(1608), 303–313. https://doi.org/10.1098/rspb.2006.3721

    Article  Google Scholar 

  • Koski, M. H., Ison, J. L., Padilla, A., Pham, A. Q., & Galloway, L. F. (2018). Linking pollinator efficiency to patterns of pollen limitation : small bees exploit the plant – pollinator mutualism. Proceeding of the Royal Society B. https://doi.org/10.1098/rspb.2018.0635

    Article  Google Scholar 

  • Kremen, C., Williams, N. M., Aizen, M. A., Gemmill-Herren, B., LeBuhn, G., Minckley, R., & Ricketts, T. H. (2007). Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecology Letters, 10(4), 299–314. https://doi.org/10.1111/j.1461-0248.2007.01018.x

    Article  Google Scholar 

  • Motzke, I., Tscharntke, T., Wanger, T. C., & Klein, A. M. (2015). Pollination mitigates cucumber yield gaps more than pesticide and fertilizer use in tropical smallholder gardens. Journal of Applied Ecology, 52(1), 261–269. https://doi.org/10.1111/1365-2664.12357

    Article  Google Scholar 

  • Narjes, M. E., & Lippert, C. (2019). The Optimal Supply of Crop Pollination and Honey From Wild and Managed Bees: An Analytical Framework for Diverse Socio-Economic and Ecological Settings. Ecological Economics, 157(December 2018), 278–290. https://doi.org/10.1016/j.ecolecon.2018.11.018

  • Osborne, J. L., Martin, A. P., Shortall, C. R., Todd, A. D., Goulson, D., Knight, M. E., Hale, R. J., & Sanderson, R. A. (2007). Quantifying and comparing bumblebee nest densities in gardens and countryside habitats. Journal of Applied Ecology, 45, 784–792. https://doi.org/10.1111/j.1365-2664.2007.01359.x

    Article  Google Scholar 

  • Pe’er, L., Dicks, P., Visconti, R., Arlettaz, R., Báldi, A., Benton, T. G., Collins, S., Dieterich, M., Gregory, R. D., & Scott, A. V. (2014). EU agricultural reform fails on biodiversity. Agricultural Policy, 344(6188), 1090–1092.

    Google Scholar 

  • Perman, R., Ma, Y., Mcgilvray, J., & Common, M. (2003). Natural Resource and Environmental Economics. 3rd edition. PEARSON Addison Wesley

  • Plantureux, S., Peeters, A., & McCracken, D. (2005). Biodiversity in intensive grasslands : Effect of management, improvement and challenges. Agronomy Research, 3(2), 153–164.

    Google Scholar 

  • Porter, M., & van der Linde, C. (1995). Green and competitive: Ending the stalemate. Harvard Business Review, 73(5), 120–133.

    Google Scholar 

  • Rader, R., Bartomeus, I., Garibaldi, L. A., Garratt, M. P. D., Howlett, B. G., Winfree, R., & Woyciechowski, M. (2016). Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences, 113(1), 146–151. https://doi.org/10.1073/pnas.1517092112

    Article  Google Scholar 

  • Rundlöf, M., Andersson, G. K. S., Bommarco, R., Fries, I., Hederström, V., Herbertsson, L., & Smith, H. G. (2015). Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature, 521(7550), 77–80. https://doi.org/10.1038/nature14420

    Article  Google Scholar 

  • Senapathi, D., Biesmeijer, J. C., Breeze, T. D., Kleijn, D., Potts, S. G., & Carvalheiro, L. G. (2015). Pollinator conservation - The difference between managing for pollination services and preserving pollinator diversity. Current Opinion in Insect Science, 12, 93–101. https://doi.org/10.1016/j.cois.2015.11.002

    Article  Google Scholar 

  • Shogren, J. F., Parkhurst, G. M., & Settle, C. (2003). Integrating economics and ecology to protect nature on private lands: Models, methods, and mindsets. Environmental Science and Policy, 6(3), 233–242. https://doi.org/10.1016/S1462-9011(03)00041-8

    Article  Google Scholar 

  • Skevas, T., Oude Lansink, A. G. J. M., & Stefanou, S. E. (2013). Designing the emerging EU pesticide policy: A literature review. NJAS - Wageningen Journal of Life Sciences, 64–65, 95–103. https://doi.org/10.1016/j.njas.2012.09.001

    Article  Google Scholar 

  • Sponsler, D. B., Grozinger, C. M., Hitaj, C., Rundlöf, M., Botías, C., Code, A., & Douglas, M. R. (2019). Pesticides and pollinators: A socioecological synthesis. Science of the Total Environment, 662, 1012–1027. https://doi.org/10.1016/j.scitotenv.2019.01.016

    Article  Google Scholar 

  • The Andersons Centre. (2014). Crop Production Technology : The Effect of the Loss of Plant Protection Products on UK Agriculture and Horticulture and the Wider Economy, 67. http://www.nfuonline.com/andersons-final-report/

  • Thompson, H. M. (2017). Interaction between pesticides and other factors in effects on bees. EFSA Supporting Publications, 9(9). https://doi.org/10.2903/sp.efsa.2012.en-340

  • Thomson, D. M. (2006). Detecting the effects of introduced species: A case study of competition between apis and the effects of introduced of species: A case study detecting between apis and bombus competition. Oikos, 114(3), 407–418. https://doi.org/10.1111/j.2006.0030-1299.14604.x

    Article  Google Scholar 

  • Tosi, S., & Nieh, J. C. (2019). Lethal and sublethal synergistic effects of a new systemic pesticide, flupyradifurone (Sivantow), on honeybees. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2019.0433

    Article  Google Scholar 

  • Underwood, E., Darwin, G., Gerritsen, E., 2017. Pollinator initiatives in EU Member States: Success factors and gaps. Report for European Commission under contract for provision of technical support related to Target 2 of the EU Biodiversity Strategy to 2020 – maintaining and restoring ecosystems and their services ENV.B.2/SER/2016/0018. Institute for European Environmental Policy, Brussels.US Environmental Protection Agency; Name of Chemical: Clothianidin Reason for Issuance: Conditional Registration Date Issued: May 30, 2003.

  • Wätzold, F., Drechsler, M., Armstrong, C. W., Baumgärtner, S., Grimm, V., Huth, A., & Wissel, C. (2006). Ecological-economic modeling for biodiversity management: Potential, pitfalls, and prospects. Conservation Biology, 20(4), 1034–1041. https://doi.org/10.1111/j.1523-1739.2006.00353.x

    Article  Google Scholar 

  • Whitehorn, P. R., O’Connor, S., Wackers, F. L., & Goulson, D. (2012). Neonicotinoid Pesticide Reduces Bumble Bee Colony Growth and Queen Production. Science, 336(6079), 351–352. https://doi.org/10.1126/science.1215025

    Article  Google Scholar 

  • Winfree, R., Gross, B. J., & Kremen, C. (2011). Valuing pollination services to agriculture. Ecological Economics, 71, 80–88. https://doi.org/10.1016/j.ecolecon.2011.08.001

    Article  Google Scholar 

  • Wood, T. J., Holland, J. M., & Goulson, D. (2015). Pollinator-friendly management does not increase the diversity of farmland bees and wasps. Biological Conservation, 187, 120–126. https://doi.org/10.1016/j.biocon.2015.04.022

    Article  Google Scholar 

  • Woodcock, B. A., Isaac, N. J. B., Bullock, J. M., Roy, D. B., Garthwaite, D. G., Crowe, A., & Pywell, R. F. (2016). Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nature Communications, 7, 12459. https://doi.org/10.1038/ncomms12459

    Article  Google Scholar 

  • Zilberman, D. (2002). Economics & Policy of Production, Technology and risk in Agriculture & Natural Resources, Lecture 3, http://are.berkeley.edu/~zilber/ARE241/fall2002. Accessed 26 Aug 2003.

Download references

Acknowledgements

We thank the University of Toulouse and the LEREPS laboratory. The authors would like to acknowledge the rest of their partners in the project for the use of collective unpublished data in this paper.

Funding

This study was carried out with financial support from the Ecole Nationale Supérieure de Formation de l'Enseignement Agricole de Toulouse-Auzeville (ENSFEA) and the Region of Occitanie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kleftodimos.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Ethical approval

This manuscript has not been published or presented elsewhere in part or in entirety and is not under consideration by another journal. All study participants provided informed consent, and the study design was approved by the appropriate ethics review board. We have read and understood your journal’s policies, and we believe that neither the manuscript nor the study violates any of these.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleftodimos, G., Gallai, N. & Kephaliacos, C. Ecological-economic modeling of pollination complexity and pesticide use in agricultural crops. J Bioecon 23, 297–323 (2021). https://doi.org/10.1007/s10818-021-09317-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10818-021-09317-9

Keywords

Navigation