Journal of Bioeconomics

, Volume 20, Issue 1, pp 165–173 | Cite as

Generating insights into human aging from experimental evolution using bats (or other “slow” life history species)

  • John P. PhelanEmail author


Our understanding of the complex process of aging has benefitted greatly from experimental evolution. The traditional animal models for human aging, however, are all characterized by “fast” life-histories, with rapid development, short lifespan and intensive, early investment in reproduction. This is in sharp contrast to the characteristics of the human life history and so may lead to inappropriate extrapolations about processes important in human aging. In response to these challenges and for better understanding and intervening in processes fundamental to aging in humans, I propose programs of experimental evolution for both delayed reproduction and for accelerated development in a bat species with a significantly slower life history than traditional animal models for human aging.


Experimental evolution Life history theory Aging Animal models Hazard factor Longevity 


  1. Austad, S. N. (1993a). Retarded senescence in an insular population of Virginia opossums (Didelphis virginiana). Journal of Zoology (London), 229, 695–708.CrossRefGoogle Scholar
  2. Austad, S. N. (1993b). The comparative perspective and choice of animal models in aging research. Aging Clinical and Experimental Research, 5, 259–267.CrossRefGoogle Scholar
  3. Ball, Z. B., Barnes, R. H., & Visscher, M. B. (1947). The effects of dietary caloric restriction on maturity and senescence, with particular reference to fertility and longevity. American Physiological Society, 150, 511–519.Google Scholar
  4. Barrick, J. E., & Lenski, R. E. (2013). Genome dynamics during experimental evolution. Nature Reviews Genetics, 14, 827–839.CrossRefGoogle Scholar
  5. Barrick, J. E., Yu, D. S., Yoon, S. H., Jeong, H., Oh, T. K., Schneider, D., Lenski, R. E., & Kim, J. F. (2009). Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature, 461, 1243–1247.Google Scholar
  6. Berry, R. J. (1970). The natural history of the house mouse. Field Studies, 3, 219–262.Google Scholar
  7. Bronson, F. H. (1989). Mammalian reproductive biology. Chicago, IL: University of Chicago Press.Google Scholar
  8. Brunet-Rossinni, A. K., & Austad, S. N. (2004). Ageing studies on bats: a review. Biogerontology, 5, 211–222.CrossRefGoogle Scholar
  9. Burnham, T. C., Dunlap, A., & Stephens, D. W. (2015). Experimental evolution and economics. SAGE Open, 5, 2158244015612524.CrossRefGoogle Scholar
  10. Calder, W. A. (1990). Avian longevity and aging. In D. E. Harrison (Ed.), Genetic effects on aging. II. Caldwell, NJ: Telford Press.Google Scholar
  11. Chippindale, A. K., Chu, T. J., & Rose, M. R. (1996). Complex trade-offs and the evolution of starvation resistance in Drosophila melanogaster. Evolution, 50, 753–766.CrossRefGoogle Scholar
  12. Chippindale, A. K., Hoang, D. T., Service, P. M., & Rose, M. R. (1994). The evolution of development in Drosophila melanogaster selected for postponed senescence. Evolution, 48, 1880–1899.CrossRefGoogle Scholar
  13. Chippindale, A. K., Leroi, A. M., Kim, S. B., & Rose, M. R. (1993). Phenotypic plasticity and selection in Drosophila life-history evolution. Nutrition and the cost of reproduction. Journal of Evolutionary Biology, 6, 171–193.CrossRefGoogle Scholar
  14. Comfort, A. (1979). The biology of senescence (3rd ed.). Edinburgh: Churchill Livingston.Google Scholar
  15. Conn, P. M. (2011). Handbook of models for human aging. San Diego: Academic Press.Google Scholar
  16. Davis, W. H., & Hitchcock, H. B. (1994). A new longevity record for Myotis lucifugus. Bat Research News, 35, 61.Google Scholar
  17. de Grey, A. D. (2005). The unfortunate influence of the weather on the rate of ageing: Why human caloric restriction or its emulation may only extend life expectancy by 2–3 years. Gerontology, 51, 73–82.CrossRefGoogle Scholar
  18. Edney, E. B., & Gill, R. W. (1968). Evolution of senescence and specific longevity. Nature, 220, 281–282.CrossRefGoogle Scholar
  19. Ellison, P. T. (2009). On fertile ground: A natural history of human reproduction. Cambridge, MA: Harvard University Press.Google Scholar
  20. Finch, C. E. (1990). Longevity, senescence, and the genome. Chicago, IL: University of Chicago Press.Google Scholar
  21. Finch, C. E., Pike, M. C., & Witten, M. (1990). Slow mortality rate accelerations during aging in some animals approximate that of humans. Science, 249, 902–905.CrossRefGoogle Scholar
  22. Fleming, T. H. (1988). The short-tailed fruit bat: A study in plant–animal interactions. Chicago: University of Chicago Press.Google Scholar
  23. Garland, T. Jr. (2003). Selection experiments: An under-utilized tool in biomechanics and organismal biology. Vertebrate Biomechanics and Evolution, 23–56.Google Scholar
  24. Garland, T, Jr., & Rose, M. R. (2009). Experimental evolution: Concepts, methods, and applications of selection experiments. Berkeley, CA: University of California Press.Google Scholar
  25. Graves, J. L. (1993). The costs of reproduction and dietary restriction: Parallels between insects and mammals. Growth, Development, and Aging, 57, 233–249.Google Scholar
  26. Harshman, L. G., & Hoffmann, A. A. (2000). Laboratory selection experiments using Drosophila: What do they really tell us? Trends in Ecology & Evolution, 15, 32–36.CrossRefGoogle Scholar
  27. Holehan, A. M., & Merry, B. J. (1985). Modification of the oestrous cycle hormonal profile by dietary restriction. Mechanisms of Ageing and Development, 32, 63–76.CrossRefGoogle Scholar
  28. Holmes, D. J. (2004). Naturally long-lived animal models for the study of slow aging and longevity. Annals of the New York Academy of Sciences, 1019, 483–485.CrossRefGoogle Scholar
  29. Holmes, D. J., & Austad, S. N. (1995). Birds as animal models for the comparative biology of aging: A prospectus. The Journals of Gerontology, 50, B59–B66.CrossRefGoogle Scholar
  30. Humphrey, S. R., & Cope, J. B. (1976). Population ecology of the little brown bat, Myotis lucifugus, in Indiana and north-central Kentucky. Special Publication, American Society of Mammalogist, 4, 1–81.Google Scholar
  31. Jurgens, K. D., & Prothero, J. (1987). Scaling of maximal lifespan in bats. Comparative Biochemistry and Physiology, 88A, 361–367.CrossRefGoogle Scholar
  32. Kaplan, H., Hill, K., Lancaster, J., & Hurtado, A. M. (2000). A theory of human life history evolution: diet, intelligence, and longevity. Evolutionary Anthropology: Issues, News, and Reviews, 9, 156–185.CrossRefGoogle Scholar
  33. Lager, C., & Ellison, P. T. (1990). Effect of moderate weight loss on ovarian function assessed by salivary progesterone measurements. American Journal of Human Biology, 2, 303–312.CrossRefGoogle Scholar
  34. Larson, W. A., Seeb, L. W., Everett, M. V., Waples, R. K., Templin, W. D., & Seeb, J. E. (2014). Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha). Evolutionary Applications, 7, 355–369.CrossRefGoogle Scholar
  35. Le Bourg, É. (2010). Predicting whether dietary restriction would increase longevity in species not tested so far. Ageing Research Reviews, 9, 289–297.CrossRefGoogle Scholar
  36. Lindstedt, S. L., & Calder, W. A. (1976). Body size and longevity in birds. Condor, 78, 91–94.CrossRefGoogle Scholar
  37. Luckinbill, L. S., Arking, R., Clare, M. J., Cirocco, W. C., & Buck, S. A. (1984). Selection for delayed senescence in Drosophila melanogaster. Evolution, 38, 996–1003.CrossRefGoogle Scholar
  38. Masoro, E. J. (2005). Overview of caloric restriction and ageing. Mechanisms of Ageing and Development, 126, 913–922.CrossRefGoogle Scholar
  39. Mattison, J. A., Colman, R. J., Beasley, T. M., Allison, D. B., Kemnitz, J. W., Roth, G. S., Ingram, D. K., Weindruch, R., De Cabo, R., & Anderson, R. M. (2017). Caloric restriction improves health and survival of rhesus monkeys. Nature Communications, 8, 1–12.Google Scholar
  40. Medawar, P. B. (1946). Old age and natural death. Modern Quarterly, 1, 30–56.Google Scholar
  41. Medawar, P. B. (1952). An unsolved problem of biology. London: H.K. Lewis.Google Scholar
  42. Merry, B. J., & Holehan, A. M. (1981). Serum profiles of LH, FSH, testosterone and 5\(\alpha \)-DHT from 21 to 1000 days of age in ad libitum fed and dietary restricted rats. Experimental Gerontology, 16, 431–444.CrossRefGoogle Scholar
  43. Munshi-South, J., & Wilkinson, G. S. (2010). Bats and birds: exceptional longevity despite high metabolic rates. Ageing Research Reviews, 9, 12–19.CrossRefGoogle Scholar
  44. Partridge, L., & Fowler, K. (1992). Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster. Evolution, 46, 76–91.CrossRefGoogle Scholar
  45. Partridge, L., Prowse, N., & Pignatelli, P. (1999). Another set of responses and correlated responses to selection on age at reproduction in Drosophila melanogaster. Proceedings of the Royal Society of London, Series B, 266, 255–261.CrossRefGoogle Scholar
  46. Phelan, J. P. (1992). Genetic variability and rodent models of human aging. Experimental Gerontology, 27, 147–159.CrossRefGoogle Scholar
  47. Phelan, J. P., & Rose, M. R. (2005). Why dietary restriction substantially increases longevity in animal models but won’t in humans. Aging Research Reviews, 4, 339–350.CrossRefGoogle Scholar
  48. Phelan, J. P., & Rose, M. R. (2006). Caloric restriction increases longevity substantially only when the reaction norm is steep. Biogerontology, 7, 161–164.CrossRefGoogle Scholar
  49. Pomeroy, D. (1990). Why fly? The possible benefits for lower mortality. The Biological Journal of the Linnean Society, 40, 53–65.CrossRefGoogle Scholar
  50. Rasweiler, J. J, I. V., & Badwaik, N. K. (1996). Improved procedures for maintaining and breeding the short-tailed fruit bat (Carollia perspicillata) in a laboratory setting. Laboratory Animals, 30, 171–181.CrossRefGoogle Scholar
  51. Roper, C., Pignatelli, P., & Partridge, L. (1993). Evolutionary effects of selection at age of reproduction in larval and adult Drosophila melanogaster. Evolution, 47, 445–455.Google Scholar
  52. Rose, M. R. (1984). Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution, 38, 1004–1010.CrossRefGoogle Scholar
  53. Rose, M. R., & Charlesworth, B. (1981). Genetics of life history in Drosophila melanogaster. II. Exploratory selection experiments. Genetics, 97, 187–196.Google Scholar
  54. Service, P. M., Hutchinson, E. W., MacKinley, M. D., & Rose, M. R. (1985). Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiological Zoology, 58, 380–389.CrossRefGoogle Scholar
  55. Sohal, R. S., & Forster, M. J. (2014). Caloric restriction and the aging process: A critique. Free Radical Biology and Medicine, 73, 366–382.CrossRefGoogle Scholar
  56. Stearns, S. C. (1992). The evolution of life histories. Oxford: Oxford University Press.Google Scholar
  57. Stearns, S. C. (2000). Life history evolution: Successes, limitations, and prospects. Naturwissenschaften, 87, 476–486.CrossRefGoogle Scholar
  58. Stearns, S. C., Kaiser, M., Ackermann, M., & Doebeli, M. (2000). The evolution of intrinsic mortality, growth, and reproduction in fruitflies. Proceedings of the National Academy of Sciences of the United States of America, 97, 3309–3313.CrossRefGoogle Scholar
  59. Wattiaux, J. M. (1968). Parental age effects in Drosophila pseudoobscura. Experimental Gerontology, 3, 55–61.CrossRefGoogle Scholar
  60. Weindruch, R., & Walford, R. L. (1988). The retardation of aging and disease by dietary restriction. Springfield, IL: Charles C. Thomas.Google Scholar
  61. Wiersma, P., Muñoz-Garcia, A., Walker, A., & Williams, J. B. (2007). Tropical birds have a slow pace of life. Proceedings of the National Academy of Sciences of the United States of America, 104, 9340–9345.CrossRefGoogle Scholar
  62. Wilkinson, G. S., & South, J. M. (2002). Life history, ecology and longevity in bats. Aging Cell, 1, 124–131.CrossRefGoogle Scholar
  63. Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398–411.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Life Sciences Core EducationUCLALos AngelesUSA

Personalised recommendations