Experimental evolution of color preference for oviposition in Drosophila melanogaster

Abstract

Preferences are the foundation of economics. Preferences are taken by economists as fixed by some implicitly biological process. In recent decades, behavioral economics has documented the divergence between the nature of human preferences and the assumptions of standard economics. In this study, we use the tool of experimental evolution to study the evolution of color preferences in fruit flies (Drosophila melanogaster). In particular, we select for a preference for laying eggs on the color aqua. We find that the flies evolve to lay more than twice as many eggs on aqua. However, this evolution occurs entirely because the flies lay more eggs overall. The flies in this study, do not evolve to lay a higher percentage of eggs on the selected color, aqua.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abed-Vieillard, D., Cortot, J., Everaerts C., & Ferveur J. F. (2013). Choice alters Drosophila oviposition site preference on menthol. Biology Open. https://doi.org/10.1242/bio.20136973.

  2. Brembs, B., & de Ibarra, N. H. (2006). Different parameters support generalization and discrimination learning in Drosophila at the flight simulator. Learning & Memory, 13(5), 629–637.

    Article  Google Scholar 

  3. Brennan, T. J., & Lo, A. W. (2011). The origin of behavior. Quarterly Journal of Finance, 01(01), 55–108.

    Article  Google Scholar 

  4. Burke, M. K., Dunham, J. P., Shahrestani, P., Thornton, K. R., Rose, M. R., & Long, A. D. (2010). Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature, 467(7315), 587–590.

    Article  Google Scholar 

  5. Burnham, T. C., Dunlap, A., & Stephens, D. W. (2015). Experimental evolution and economics. SAGE Open, 5(4), 1–17.

    Article  Google Scholar 

  6. Carfagna, M., & Lancieri, M. (1971). Colour vision and the choice of substrate during oviposition in Drosophila melanogaster Meig. Monitore Zoologico Italiano-Italian Journal of Zoology, 5(4), 215–222.

    Google Scholar 

  7. Collins, J., Baer, B., & Weber, E. J. (2016). Evolutionary biology in economics: A review. Economic Record, 92(297), 291–312.

    Article  Google Scholar 

  8. Del Solar, E., Guijón, A. M., & Walker, L. (1974). Choice of colored substrates for oviposition in Drosophila melanogaster. Italian Journal of Zoology, 41(3), 253–260.

    Google Scholar 

  9. Del Solar, E., & Ruiz, G. (1979). Behaviour changes in Drosophila melanogaster in the choice of colored substrates for oviposition. Italian Journal of Zoology, 46(1–2), 17–22.

    Google Scholar 

  10. Dulai, K. S., von Dornum, M., Mollon, J. D., & Hunt, D. M. (1999). The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome Research, 9(7), 629–638.

    Google Scholar 

  11. Dunlap, A. S., & Stephens, D. W. (2014). Experimental evolution of prepared learning. Proceedings of the National Academy of Sciences, 111(32), 11750–11755.

    Article  Google Scholar 

  12. Dweck, H. K., Ebrahim, S. A., Kromann, S., Bown, D., Hillbur, Y., Sachse, S., Hansson, B. S., Stensmyr, M. C. (2013). Olfactory preference for egg laying on citrus substrates in Drosophila. Current Biology, 23(24), 2472–2480.

  13. Erclik, T., Hartenstein, V., McInnes, R. R., & Lipshitz, H. D. (2009). Eye evolution at high resolution: The neuron as a unit of homology. Developmental Biology, 332(1), 70–79.

    Article  Google Scholar 

  14. Foucaud, J., Moreno, C., Pascual, M., Rezende, E. L., Castaneda, L. E., Gibert, P., Mery, F. (2016). Introduced Drosophila subobscura populations perform better than native populations during an oviposition choice task due to increased fecundity but similar learning ability. Ecology and Evolution, 6(6), 1725–1736.

  15. Fox, C. W., & Rauter, C. M. (2003). Bet-hedging and the evolution of multiple mating. Evolutionary Ecology Research, 5(2), 273–286.

    Google Scholar 

  16. Frentiu, F. D., Bernard, G. D., Sison-Mangus, M. P., Van Zandt Brower, A., & Briscoe, A. D. (2007). Gene duplication is an evolutionary mechanism for expanding spectral diversity in the long-wavelength photopigments of butterflies. Molecular Biology and Evolution, 24(9), 2016–2028.

    Article  Google Scholar 

  17. Gonzalez-Bellido, P. T., Wardill, T. J., & Juusola, M. (2011). Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands. Proceedings of the National Academy of Sciences, 108(10), 4224–4229.

    Article  Google Scholar 

  18. Hansson, I., & Stuart, C. (1990). Malthusian selection of preferences. American Economic Review, 80(3), 529–544.

    Google Scholar 

  19. Hansson, I., & Stuart, C. (1992). Socialization and altruism. Journal of Evolutionary Economics, 2(4), 301–312.

    Article  Google Scholar 

  20. Harzsch, S., Melzer, R. R., & Müller, C. H. (2007). Mechanisms of eye development and evolution of the arthropod visual system: The lateral eyes of Myriapoda are not modified insect ommatidia. Organisms Diversity & Evolution, 7(1), 20–32.

    Article  Google Scholar 

  21. Heisenberg, M., & Wolf, R. (2013). Vision in Drosophila: Genetics of microbehavior. New York: Springer.

    Google Scholar 

  22. Joseph, R. M., Devineni, A. V., King, I. F., & Heberlein, U. (2009). Oviposition preference for and positional avoidance of acetic acid provide a model for competing behavioral drives in Drosophila. Proceedings of the National Academy of Sciences, 106(27), 11352–11357.

    Article  Google Scholar 

  23. Kahneman, D., Knetsch, J., & Thaler, R. H. (1991). Anomalies: The endowment effect, loss aversion, and status quo bias. The Journal of Economic Perspectives, 5(1), 193–206.

    Article  Google Scholar 

  24. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–292.

    Article  Google Scholar 

  25. Kozmik, Z. (2008). The role of Pax genes in eye evolution. Brain Research Bulletin, 75(2), 335–339.

    Article  Google Scholar 

  26. Mery, F., & Kawecki, T. J. (2002). Experimental evolution of learning ability in fruit flies. Proceedings of the National Academy of Sciences, 99(22), 14274–14279.

    Article  Google Scholar 

  27. Miller, P. M., Saltz, J. B., Cochrane, V. A., Marcinkowski, C. M., Mobin, R., & Turner, T. L. (2011). Natural variation in decision-making behavior in Drosophila melanogaster. PLoS ONE, 6(1), e16436.

    Article  Google Scholar 

  28. Panchanathan, K., & Boyd, R. (2003). A tale of two defectors: The importance of standing for evolution of indirect reciprocity. Journal of Theoretical Biology, 224(1), 115–126.

    Article  Google Scholar 

  29. Peterson, K. J., & Eernisse, D. J. (2016). The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25 years of new techniques, new discoveries, and new ideas. Organisms Diversity & Evolution, 16(2), 401–418.

    Article  Google Scholar 

  30. Robson, A. (1994). The evolution of attitudes to risk: Lottery tickets and relative wealth. Mimeo: University of Western Ontario.

    Google Scholar 

  31. Robson, A. J., Szentes, B., & Iantchev, E. (2012). The evolutionary basis of time preference: Intergenerational transfers and sex. American Economic Journal: Microeconomics, 4(4), 172–201.

    Google Scholar 

  32. Rogers, A. R. (1994). Evolution of time preference by natural selection. American Economic Review, 84(3), 460–481.

    Google Scholar 

  33. Rose, M. (1984). Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution, 38, 1004–1010.

    Article  Google Scholar 

  34. Rubin, P. H., & Paul, C. W. (1979). An evolutionary model of tastes for risk. Economic Inquiry, 17(4), 585–596.

    Article  Google Scholar 

  35. Salcedo, E., Huber, A., Henrich, S., Chadwell, L. V., Chou, W.-H., Paulsen, R., Britt, S. G. (1999). Blue-and green-absorbing visual pigments of Drosophila: Ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins. Journal of Neuroscience, 19(24), 10716–10726.

  36. Salomon, C. H., & Spatz, H.-C. (1983). Colour vision in Drosophila melanogaster: Wavelength discrimination. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 150(1), 31–37.

    Article  Google Scholar 

  37. Schnaitmann, C., Garbers, C., Wachtler, T., & Tanimoto, H. (2013). Color discrimination with broadband photoreceptors. Current Biology, 23(23), 2375–2382.

    Article  Google Scholar 

  38. Stigler, G. J., & Becker, G. S. (1977). De Gustibus Non Est Disputam. The American Economic Review, 67(2), 76–90.

    Google Scholar 

  39. Suzuki, T., Takayama, R., & Sato, M. (2016). Eyeless/Pax6 controls the production of glial cells in the visual center of Drosophila melanogaster. Developmental Biology, 409(2), 343–353.

    Article  Google Scholar 

  40. Tversky, A., & Kahneman, D. (1974). Judgement under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131.

    Article  Google Scholar 

  41. Washington, C. G. (2010). Color vision in Drosophila melanogaster. New York: Columbia University.

  42. Yang, C.-H., Belawat, P., Hafen, E., Jan, L. Y., & Jan, Y.-N. (2008). Drosophila egg-laying site selection as a system to study simple decision-making processes. Science, 319(5870), 1679–1683.

    Article  Google Scholar 

  43. Zhang, J. (2003). Evolution by gene duplication: An update. Trends in Ecology & Evolution, 18(6), 292–298.

    Article  Google Scholar 

  44. Zhu, J., Palliyil, S., Ran, C., & Kumar, J. P. (2017). Drosophila Pax6 promotes development of the entire eye-antennal disc, thereby ensuring proper adult head formation. Proceedings of the National Academy of Sciences, 114(23), 5846–5853.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Ulrich Witt, Editor of the Journal of Bioeconomics who ran the review process for this paper, and two anonymous reviewers, for their excellent comments. We also thank Pamela Tocco, Toni Walker, the students of the Dunlap Lab, and the extended Marcus-Yoakum family. In addition, we would like to thank Itachi Mills for working on an independent verification of the preference and fecundity effects. The work was supported, in part, by NSF Grant: IOS-1021183

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aimee S. Dunlap.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marcus, M., Burnham, T.C., Stephens, D.W. et al. Experimental evolution of color preference for oviposition in Drosophila melanogaster . J Bioecon 20, 125–140 (2018). https://doi.org/10.1007/s10818-017-9261-z

Download citation

Keywords

  • Adaptation
  • Preference theory
  • Experimental evolution
  • Evolution
  • Behavioral economics
  • selection