Journal of Bioeconomics

, Volume 20, Issue 1, pp 107–124 | Cite as

Experimental evolution of bacteria across 60,000 generations, and what it might mean for economics and human decision-making

Article

Abstract

Evolutionary biology and economics are both rich in theory and steeped in data, but they also share challenges including the fact that the systems they seek to understand are, in certain respects, unique and not easily manipulated. Nonetheless, both fields have seen growing efforts to provide experimental approaches to address specific issues. Here, we review some results from a 30-year experiment in which 12 populations of bacteria have been evolving for over 60,000 generations to characterize: (i) the time scale of adaptation to new conditions, (ii) the repeatability of evolutionary changes, and (iii) the benefits and costs of specialization. In each case, we speculate on potential connections and implications of these findings for the field of economics. Moreover, both the bacteria in this experiment and people in modern societies live in novel environments, which leads to an evolutionary mismatch between their genes and environments. Regardless of the value of our speculations, we hope this paper stimulates further interest in pursuing experiments in fields that are often viewed as observational and not amenable to experimentation.

Keywords

Adaptation Decision making Experimental evolution Evolution Evolutionary mismatch Randomness Repeatability Specialization 

Notes

Acknowledgements

The authors dedicate this paper to the memory of their parents, Gerhard and Jean Lenski, and Thomas and Marie Burnham. The LTEE has been supported, in part, by the National Science Foundation (DEB-1451740), the BEACON Center for the Study of Evolution in Action (DBI-0939454), the USDA National Institute of Food and Agriculture (MICL02253), and Michigan State University. We thank Mike Travisano for encouraging us to write this paper and for stimulating discussions. We also thank three anonymous reviewers for thoughtful suggestions that helped us improve our paper.

References

  1. Angrist, J. D. (1990). Lifetime earnings and the Vietnam era draft lottery: Evidence from Social Security administrative records. American Economic Review, 80, 313–336.Google Scholar
  2. Barber, B. M., & Odean, T. (2000). Trading is hazardous to your wealth: The common stock performance of individual investors. Journal of Finance, 55, 773–806.CrossRefGoogle Scholar
  3. Barrick, J. E., Yu, D. S., Yoon, S. H., Jeong, H., Oh, T. K., Schneider, D., Lenski, R.E., & Kim, J.F. (2009). Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature, 461, 1243–1247.Google Scholar
  4. Becker, G., & Murphy, K. (1988). A rational theory of addiction. Journal of Political Economy, 96, 675–700.CrossRefGoogle Scholar
  5. Blount, Z. D., Borland, C. Z., & Lenski, R. E. (2008). Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proceedings of the National Academy of Sciences, USA, 105, 7899–7906.CrossRefGoogle Scholar
  6. Blount, Z. D., Barrick, J. E., Davidson, C. J., & Lenski, R. E. (2012). Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature, 489, 513–518.CrossRefGoogle Scholar
  7. Bonner, J. T. (1965). Size and cycle: An essay on the structure of biology. Princeton: Princeton University Press.CrossRefGoogle Scholar
  8. Brenner, H., Stock, C., & Hoffmeister, M. (2014). Effect of screening sigmoidoscopy and screening colonoscopy on colorectal cancer incidence and mortality: systematic review and meta-analysis of randomised controlled trials and observational studies. BMJ, 348, g2467.CrossRefGoogle Scholar
  9. Bumpus, H. C. (1899). The elimination of the unfit as illustrated by the introduced sparrow, Passer domesticus. Biological Lectures, 6, 209–226.Google Scholar
  10. Burnham, T. C. (2016). Economics and evolutionary mismatch: Humans in novel settings do not maximize. Journal of Bioeconomics, 18, 195–209.CrossRefGoogle Scholar
  11. Burnham, T. C., Dunlap, A., & Stephens, D. W. (2015). Experimental evolution and economics. SAGE Open, 5, 1–17.CrossRefGoogle Scholar
  12. Chamberlin, E. (1948). An experimental imperfect market. Journal of Political Economy, 56, 95–108.CrossRefGoogle Scholar
  13. Chisholm, J. (2017). Drones, dangerous animals, and peeping toms: impact of imposed vs. organic regulation on entrepreneurship, innovation, and economic growth. International Journal of Entrepreneurship and Small BusinessGoogle Scholar
  14. Cooper, V. S., & Lenski, R. E. (2000). The population genetics of ecological specialization in evolving Escherichia coli populations. Nature, 407, 736–739.CrossRefGoogle Scholar
  15. Dallinger, W. H. (1887). Transactions of the Society. V. The president’s address. Journal of the Royal Microscopical Society, 10, 184–199.Google Scholar
  16. Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: Murray.CrossRefGoogle Scholar
  17. Dechenaux, E., Kovenock, D., & Sheremeta, R. M. (2015). A survey of experimental research on contests, all-pay auctions and tournaments. Experimental Economics, 18, 609–669.CrossRefGoogle Scholar
  18. de Visser, J. A. G. M., & Lenski, R. E. (2002). Long-term experimental evolution in Escherichia coli. XI. Rejection of non-transitive interactions as cause of declining rate of adaptation. BMC Evolutionary Biology, 2, 19.CrossRefGoogle Scholar
  19. Dobzhansky, T. (1963). Anthropology and the natural sciences–The problem of human evolution. Current Anthropology, 4, 138–148.CrossRefGoogle Scholar
  20. Elena, S. F., & Lenski, R. E. (2003). Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. Nature Reviews Genetics, 4, 457–469.CrossRefGoogle Scholar
  21. Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33, 3–56.CrossRefGoogle Scholar
  22. Fama, E. F., & French, K. R. (2012). Size, value, and momentum in international stock returns. Journal of Financial Economics, 105, 457–472.CrossRefGoogle Scholar
  23. Fox, J. W., & Lenski, R. E. (2015). From here to eternity–The theory and practice of a really long experiment. PLoS Biology, 13, e1002185.CrossRefGoogle Scholar
  24. Gerbault, P., Roffet-Salque, M., Evershed, R. P., & Thomas, M. G. (2013). How long have adult humans been consuming milk? IUBMB Life, 65, 983–990.CrossRefGoogle Scholar
  25. Hoffman, E., McCabe, K., Shachat, K., & Smith, V. (1994). Preferences, property rights, and anonymity in bargaining games. Games and Economic Behavior, 7, 346–380.CrossRefGoogle Scholar
  26. Huey, R. B., & Rosenzweig, F. (2009). Laboratory evolution meets Catch-22. In T. Garland Jr. & M. R. Rose (Eds.), Experimental evolution: Concepts, methods, and applications of selection experiments (pp. 671–701). Berkeley: University of California Press.Google Scholar
  27. Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology. Oxford: Oxford University Press.Google Scholar
  28. Kawecki, T. J., Lenski, R. E., Ebert, D., Hollis, B., Olivieri, I., & Whitlock, M. C. (2012). Experimental evolution. Trends in Ecology & Evolution, 27, 547–560.CrossRefGoogle Scholar
  29. Ladabaum, U., Mannalithara, A., Myer, P. A., & Singh, G. (2014). Obesity, abdominal obesity, physical activity, and caloric intake in US adults: 1988 to 2010. American Journal of Medicine, 127, 717–727.CrossRefGoogle Scholar
  30. Laland, K. N., & Brown, G. R. (2006). Niche construction, human behavior, and the adaptive-lag hypothesis. Evolutionary Anthropology, 15, 95–104.CrossRefGoogle Scholar
  31. Lande, R., & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution, 37, 1210–1226.CrossRefGoogle Scholar
  32. Leiby, N., & Marx, C. J. (2014). Metabolic erosion primarily through mutation accumulation, and not tradeoffs, drives limited evolution of substrate specificity in Escherichia coli. PLoS Biology, 12, e1001789.CrossRefGoogle Scholar
  33. Lenski, G. (2005). Ecological-evolutionary theory: Principles and applications. Boulder: Paradigm Press.Google Scholar
  34. Lenski, G., & Lenski, J. (1974). Human societies: An introduction to macrosociology. New York: McGraw-Hill.Google Scholar
  35. Lenski, R. E. (2017). Convergence and divergence in a long-term experiment with bacteria. American Naturalist, 190, S57–S58.CrossRefGoogle Scholar
  36. Lenski, R. E., & Mongold, J. A. (2000). Cell size, shape, and fitness in evolving populations of bacteria. In J. H. Brown & G. B. West (Eds.), Scaling in Biology (pp. 221–235). Oxford: Oxford University Press.Google Scholar
  37. Lenski, R. E., & Travisano, M. (1994). Dynamics of adaptation and diversification: A 10,000-generation experiment with bacterial populations. Proceedings of the National Academy of Sciences, USA, 91, 6808–6814.CrossRefGoogle Scholar
  38. Lenski, R. E., Rose, M. R., Simpson, S. C., & Tadler, S. C. (1991). Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2000 generations. American Naturalist, 138, 1315–1341.CrossRefGoogle Scholar
  39. Lenski, R. E., Wiser, M. J., Ribeck, N., Blount, Z. D., Nahum, J. R., Morris, J. J., Zaman, L., Turner, C. B., Wade, B. D., Maddamsetti, R., & Burmeister, A. R. (2015). Sustained fitness gains and variability in fitness trajectories in the long-term evolution experiment with Escherichia coli. Proceedings of the Royal Society, London B, 282, 20152292.Google Scholar
  40. Maynard Smith, J. (1982). Evolution and the theory of games. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  41. Maynard Smith, J. (1992). Byte-sized evolution. Nature, 335, 772–773.CrossRefGoogle Scholar
  42. McTavish, E. J., Decker, J. E., Schnabel, R. D., Taylor, J. F., & Hillis, D. M. (2013). New World cattle show ancestry from multiple independent domestication events. Proceedings of the National Academy of Sciences, USA, 110, E1398–E1406.CrossRefGoogle Scholar
  43. Messer, P. W., & Petrov, D. A. (2013). Population genomics of rapid adaptation by soft selective sweeps. Trends in Ecology & Evolution, 28, 659–669.CrossRefGoogle Scholar
  44. Miller, R. M. (2002). Paving wall street: Experimental economics and the quest for the perfect market. Hoboken, New Jersey: Wiley.Google Scholar
  45. Quandt, E. M., Deatherage, D. E., Ellington, A. D., Georgiou, G., & Barrick, J. E. (2014). Recursive genomewide recombination and sequencing reveals a key refinement step in the evolution of a metabolic innovation in Escherichia coli. Proceedings of the National Academy of Sciences, USA, 111, 2217–2222.CrossRefGoogle Scholar
  46. Quandt, E. M., Gollihar, J., Blount, Z. D., Ellington, A. D., Georgiou, G., & Barrick, J. E. (2015). Fine-tuning citrate synthase flux potentiates and refines metabolic innovation in the Lenski evolution experiment. eLife, 4, e09696.CrossRefGoogle Scholar
  47. Rayo, L., & Becker, G. (2007). Evolutionary efficiency and happiness. Journal of Political Economy, 115, 302–337.CrossRefGoogle Scholar
  48. Rosati, A. G. (2017). The evolution of primate executive function: From response control to strategic decision-making. In J. Kaas (Ed.), Evolution of Nervous Systems (Vol. 3, pp. 423–437). Oxford: Academic Press.CrossRefGoogle Scholar
  49. Smith, A. (1776). An inquiry into the nature and causes of the wealth of nations. London: Strahan and Cadell.CrossRefGoogle Scholar
  50. Smith, V. L., Suchanek, G. L., & Williams, A. W. (1988). Bubbles, crashes, and endogenous expectations in experimental spot asset markets. Econometrica, 56, 1119–1151.CrossRefGoogle Scholar
  51. Sniegowski, P. D., Gerrish, P. J., & Lenski, R. E. (1997). Evolution of high mutation rates in experimental populations of Escherichia coli. Nature, 387, 703–705.CrossRefGoogle Scholar
  52. Sutter, M. E., Gerona, R. R., Davis, M. T., Roche, B. M., Colby, D. K., Chenoweth, J. A., Adams, A. J., Owen, K. P., Ford, J. B., Black, H. B., & Albertson, T. E. (2017). Fatal fentanyl: One pill can kill. Academic Emergency Medicine, 24, 106–113.Google Scholar
  53. Tenaillon, O., Barrick, J. E., Ribeck, N., Deatherage, D. E., Blanchard, J. L., Dasgupta, A., Wu, G. C., Wielgoss, S., Cruveiller, S., Médigue, C., Schneider, D., & Lenski, R. E. (2016). Tempo and mode of genome evolution in a 50,000-generation experiment. Nature, 536, 165–170.Google Scholar
  54. Travisano, M., & Lenski, R. E. (1996). Long-term experimental evolution in Escherichia coli. IV. Targets of selection and the specificity of adaptation. Genetics, 143, 15–26.Google Scholar
  55. von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton: Princeton University Press.Google Scholar
  56. Wielgoss, S., Barrick, J. E., Tenaillon, O., Wiser, M. J., Dittmar, W. J., Cruveiller, S., Wu, G. C., Wielgoss, S., Cruveiller, S., Chane-Woon-Ming, B., Médigue, C., Lenski, R. E., & Schneider, D. (2013). Mutation rate dynamics in a bacterial population balance evolvability and genetic load. Proceedings of the National Academy of Sciences, USA, 110, 222–227.Google Scholar
  57. Wiser, M. J., Ribeck, N., & Lenski, R. E. (2013). Long-term dynamics of adaptation in asexual populations. Science, 342, 1364–1367.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Michigan State UniversityEast LansingUSA
  2. 2.Chapman UniversityOrangeUSA

Personalised recommendations