Journal of Bioeconomics

, Volume 19, Issue 2, pp 187–199 | Cite as

An essay on the biological origin of producing surplus value by human labor

  • Hilmi Uysal
  • Hüseyin Tuğrul Atasoy
  • Uğur Bilge


In this essay, we explore the origins of the ability to produce surplus value through human labor. The main hypothesis is that the safety factor for energy capacity in humans determines the surplus value of human labor in human societies. We estimate the safety factor for Homo sapiens to be around 2.78. This is based on the rise of the encephalization quotient from 2.5 in Australopithecus africanus to 5.8 in H. sapiens, and we assume this rise is matched by a rise in the safety factor from 1.2 to 2.78. Being a communal species compels human individuals to produce both their personal and their community’s energy need. The possible correlation between Dunbar’s number and the safety factor of energy production capacity provides a very essential feature of human labor, namely “surplus value”. The average labor activity of a modern human is sufficient to provide energy for two to three people’s energy burden in a community. Human labor not only produces the energy for survival of an individual but also produces a surplus due to the safety factor. Therefore, work activity of an individual enables them to supply more than they need for themselves as a value.


Human evaluation Surplus value Safety factor Encephalization quotient Innovation quotient 



Basal metabolic rate


Body mass index


Metabolic expenditure associated with working activity


Average weight of the species


Encephalization quotient


Innovation quotient


Energy created by human labor



This manuscript did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.


  1. Aiello, L. C., & Wheeler, P. (1995). The expensive-tissue hypothesis—The brain and the digestive-system in human and primate evolution. Current Anthropology, 36(2), 199–221.CrossRefGoogle Scholar
  2. Aschoff, J., & Pohl, H. (1970). Rhythmic variations in energy metabolism. Federation Proceedings, 29(4), 1541–1552.Google Scholar
  3. Bickerton, D. (1999). Apes, language and the human mind. Journal of Anthropological Research, 55(3), 448–450.CrossRefGoogle Scholar
  4. Bickerton, D. (2009). Adam’s tongue: How humans made language, how language made humans. New York: Hill and Wang.Google Scholar
  5. Blumenschine, R. J., & Cavallo, J. A. (1992). Scavenging and human evolution. Scientific American, 267(4), 90–96.CrossRefGoogle Scholar
  6. Campbell, W. W. (2013). Dejong’s the neurological examination. Philadelphia: Lippincott Williams and Wilkins and Wolters Kluwer.Google Scholar
  7. Carmody, R. N., Weintraub, G. S., Secor, S. M., & Wrangham, R. W. (2010). Energetic significance of food processing: A test of the cooking hypothesis. Integrative and Comparative Biology, 50, E24.Google Scholar
  8. Diamond, J. (1995). Safety factors in biological systems: Molecules, organs and evolutionary systems. Mathematical Social Sciences, 30, 319–329.CrossRefGoogle Scholar
  9. Diamond, J. (2002). Quantitative evolutionary design. Journal of Physiology, 542(Pt 2), 337–345.CrossRefGoogle Scholar
  10. Dunbar, R. I. M. (1993). Coevolution of neocortical size, group-size and language in humans. Behavioral and Brain Sciences, 16(4), 681–694.Google Scholar
  11. Dunbar, R. I. M. (2001). Brains on two legs: Group size and the evolution of intelligence. In F. B. M. de Waal (Ed.), Tree of origins: What primate behavior can tell us about human social evolution (pp. 173–191). Cambridge, MA: Harvard University Press.Google Scholar
  12. Dunbar, R. I. M. (2008). Why humans aren’t just great apes: humans and the social brain. British Academy Review, (9), 15–17.Google Scholar
  13. Edgar, B., & Klein, R. G. (2002). The dawn of human culture. New York: Wiley.Google Scholar
  14. Ferraro, J. V., Plummer, T. W., Pobiner, B. L., Oliver, J. S., Bishop, L. C., Braun, D. R., Ditchfield, P. W., Seaman, J. W., Binetti, K. M., Seaman, J. W., Hertel, F., & Potts, R. (2013). Earliest archaeological evidence of persistent hominin carnivory. PLoS ONE, 8(4). doi: 10.1371/journal.pone.0062174.
  15. Gluckman, P., Beedle, A., & Hanson, M. (2009). Principles of evolutionary medicine. Oxford: Oxford University Press.Google Scholar
  16. Harris, J. A., & Benedict, F. G. (1918). A biometric study of human basal metabolism. Proceedings of the National Academy of Sciences of USA, 4(12), 370–373.CrossRefGoogle Scholar
  17. Heilman, K. M., & Rothi, L. J. G. (2003). Apraxia. Oxford: Oxford University Press.Google Scholar
  18. Henry, C. J. (2005). Basal metabolic rate studies in humans: Measurement and development of new equations. Public Health Nutrition, 8(7A), 1133–1152.CrossRefGoogle Scholar
  19. Herculano-Houzel, S. (2011). Scaling of brain metabolism with a fixed energy budget per neuron: Implications for neuronal activity, plasticity and evolution. PLoS ONE, 6(3), e17514.CrossRefGoogle Scholar
  20. Herculano-Houzel, S. (2012). The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proceedings of the National Academy of Sciences of USA, 109(Suppl 1), 10661–10668.CrossRefGoogle Scholar
  21. Holloway, R. L. (1983). Human paleontological evidence relevant to language behavior. Human Neurobiology, 2(3), 105–114.Google Scholar
  22. Isaac, A. (1989). Asimov’s chronology of science and discovery. New York: Harper and Row.Google Scholar
  23. Jacobs, D. H., Adair, J. C., Macauley, B., Gold, M., Gonzalez Rothi, L. J., & Heilman, K. M. (1999). Apraxia in corticobasal degeneration. Brain and Cognition, 40(2), 336–354.CrossRefGoogle Scholar
  24. Jerison, H. J. (1973). Evolution of the brain and intelligence. New York: Academic.Google Scholar
  25. Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Science, 8(2), 71–78.CrossRefGoogle Scholar
  26. Kaplan, H. (2006). The life course of a skill-intensive foraging species. Daedalus, 135(1), 48–57.Google Scholar
  27. Kaplan, H., Hill, K., Lancaster, J., & Hurtado, A. M. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology, 9, 156–185.CrossRefGoogle Scholar
  28. Kaplan, H. S., Gangestad, S., Lancaster, J., Gurven, M., Mueller, T., & Robson, A. (2007). The evolution of diet, brain and life history among primates and humans. In W. Roebocks (Ed.), Guts, brains, food and the social life of early hominids (pp. 47–90). Leiden: University of Leiden Press.Google Scholar
  29. Kaplan, H. S., Hooper, P. L., & Gurven, M. (2009). The evolutionary and ecological roots of human social organization. Philosophical Transactions of Royal Society of London, B: Biological Sciences, 364(1533), 3289–3299.CrossRefGoogle Scholar
  30. Kleiber, M. (1947). Body size and metabolic rate. Physiological Reviews, 27(4), 511–541.Google Scholar
  31. Leonard, W. R., Robertson, M. L., Snodgrass, J. J., & Kuzawa, C. W. (2003). Metabolic correlates of hominid brain evolution. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 136(1), 5–15.CrossRefGoogle Scholar
  32. Martin, R. D. (1984). Body size, brain size and feeding strategies. New York: Plenum Press.CrossRefGoogle Scholar
  33. Marx, K. (1974). Capital a critique of political economy: The process of production of capital. Moscow: Progress Publishers.Google Scholar
  34. Mathot, K. J., & Dingemanse, N. J. (2015). Energetics and behavior: Unrequited needs and new directions. Trends in Ecology and Evolution, 30(4), 199–206.CrossRefGoogle Scholar
  35. McNab, B. K. (1997). On the utility of uniformity in the definition of basal rate of metabolism. Physiological Zoology, 70(6), 718–720.CrossRefGoogle Scholar
  36. Mifflin, M. D., St. Jeor, S. T., Hill, L. A., Scott, B. J., Daugherty, S. A., & Koh, Y. O. (1990). A new predictive equation for resting energy expenditure in healthy individuals. American Journal of Clinical Nutrition, 51(2), 241–247.Google Scholar
  37. Pontzer, H., Brown, M. H., Raichlen, D. A., Dunsworth, H., Hare, B., Walker, K., Luke, A., Dugas, L. R., Durazo-Arvizu, R., Schoeller, D., Plange-Rhule, J., Bovet, P., Forrester, T. E., Lambert, E. V., Thompson, M. E., Shumaker, R. W., & Ross, S. R. (2016). Metabolic acceleration and the evolution of human brain size and life history. Nature, 533(7603), 390–392.Google Scholar
  38. Povinelli, D. J. (2000). Folk physics for apes: The chimpanzee’s theory of how the world works. Oxford: Oxford University Press.Google Scholar
  39. Power, M. L., & Schulkin, J. (2009). Evolution of obesity. Baltimore, MD: Johns Hopkins University Press.Google Scholar
  40. Ruff, C. B., Trinkaus, E., & Holliday, T. W. (1997). Body mass and encephalization in Pleistocene Homo. Nature, 387(6629), 173–176.CrossRefGoogle Scholar
  41. Sabyasachi, S. (2008). Principles of medical physiology. New York: Thieme.Google Scholar
  42. Schoenemann, P. T. (2004). Brain size scaling and body composition in mammals. Brain Behavior and Evolution, 63(1), 47–60.CrossRefGoogle Scholar
  43. Schuppli, C., Graber, S. M., Isler, K., & van Schaik, C. P. (2016). Life history, cognition and the evolution of complex foraging niches. Journal of Human Evolution, 92, 91–100.Google Scholar
  44. Werner, E. E., & Gilliam, J. F. (1984). The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics, 15, 393–425.CrossRefGoogle Scholar
  45. Wrangham, R. W., & Carmody, R. N. (2010). Human adaptation to the control of fire. Evolutionary Anthropology, 19(5), 187–199.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Hilmi Uysal
    • 1
  • Hüseyin Tuğrul Atasoy
    • 2
  • Uğur Bilge
    • 3
  1. 1.Department of Neurology, Faculty of MedicineAkdeniz UniversityAntalyaTurkey
  2. 2.Department of Neurology, Faculty of MedicineBülent Ecevit UniversityZonguldakTurkey
  3. 3.Department of Biostatistics and Medical Informatics, Faculty of MedicineAkdeniz UniversityAntalyaTurkey

Personalised recommendations