Journal of Bioeconomics

, Volume 17, Issue 3, pp 207–216 | Cite as

Social Biomimicry: what do ants and bees tell us about organization in the natural world?

Article

Abstract

The social insects serve as exemplars for social biomimicry, the search for social design inspiration from the natural world. Although their group members are individually much simpler than humans, social insect colonies provide elegant tutorials on the large-scale outcomes that can be achieved by social interactions and self-organizational processes. These range from complex physical structures built by collective effort; to exemplars of flexible work organization; to effective consensus building in group decisions. This special issue highlights examples of the lessons to be learned from the bees and ants, providing ways to think about how humans can (and in some cases should not) borrow from social insect rules of organization and their collective outcomes.

Keywords

Social biomimicry Social insects Self-organization Collective behavior 

References

  1. Anderson, C., & McShea, D. W. (2001). Individual versus social complexity, with particular reference to ant colonies. Biological Reviews of the Cambridge Philosophical Society, 76, 211–237.CrossRefGoogle Scholar
  2. Autumn, K., Dittmore, A., Santos, D., Spenko, M., & Cutkosky, M. (2006). Frictional adhesion: A new angle on gecko attachment. Journal of Experimental Biology, 209, 3569–3579.CrossRefGoogle Scholar
  3. Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, T. W., et al. (2000). Adhesive force of a single gecko foot-hair. Nature, 405, 681–685.CrossRefGoogle Scholar
  4. Beckers, R., Deneubourg, J. L., & Goss, S. (1993). Modulation of trail laying in the ant Lasius niger (Hymenoptera: Formicidae) and its role in the collective selection of a food source. Journal of Insect Behavior, 6, 751–759.CrossRefGoogle Scholar
  5. Ben-Alon, L., Sacks, R., & Grobman, Y. J. (2014). Similarities and differences between humans’ and social insects’ building processes and building behaviors. In: Construction Research Congress 2014: Construction in a Global Network (pp. 51–60). American Society of Civil Engineers. doi:10.1061/9780784413517.006.
  6. Benyus, J. M. (1997). Biomimicry. New York: William Morrow.Google Scholar
  7. Beshers, S. N., & Fewell, J. H. (2001). Models of division of labor in social insects. Annual Review of Entomology, 46, 413–440.CrossRefGoogle Scholar
  8. Boesch, C. (1994). Cooperative hunting in wild chimpanzees. Animal Behaviour, 48, 653–667.CrossRefGoogle Scholar
  9. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From Natural to Artificial Systems. Oxford: Oxford University Press.Google Scholar
  10. Bonabeau, E., Theraulaz, G., Deneubourg, J. L., Aron, S., & Camazine, S. (1997). Self-organization in social insects. Trends in Ecology & Evolution, 12, 188–193.CrossRefGoogle Scholar
  11. Bourke, A. F., & Franks, N. R. (1995). Social evolution in ants. Princeton: Princeton University Press.Google Scholar
  12. Camazine, S., Deneubourg, J., Franks, N. R., Sneyd, J., Theraulaz, G., Bonabeau, E. (2001). Self-Organization in Biological Systems. Princeton, NJ: Princeton University Press.Google Scholar
  13. Cassill, D. L., Casella, A., Clayborn, J., Perry, M., & Lagarde, M. (2015). What can ants tell us about collective behavior during a natural catastrophe? Journal of Bioeconomics, 2015, 1–16. doi:10.1007/s10818-015-9195-2.
  14. Charbonneau, D., & Dornhaus, A. (2015). When doing nothing issomething. How task allocation strategies compromise betweenflexibility, efficiency, and inactive agents. Journal of Bioeconomics. doi:10.1007/s10818-015-9205-4.
  15. Chevallereau, C., Bessonnet, G., Abba, G., & Aoustin, Y. (2013). Bipedal robots: Modeling, design and walking synthesis. New York: Wiley.Google Scholar
  16. Czaczkes, T. J., Grüter, C., & Ratnieks, F. L. (2013). Negative feedback in ants: Crowding results in less trail pheromone deposition. Journal of the Royal Society Interface, 10, 20121009.CrossRefGoogle Scholar
  17. De Waal, F. B. (2000). Primates-a natural heritage of conflict resolution. Science, 289, 586–590.CrossRefGoogle Scholar
  18. Engel, C. (2011). Dictator games: A meta study. Experimental Economics, 14, 583–610.CrossRefGoogle Scholar
  19. Ensminger, J., & Henrich, J. (2014). Experimenting with social norms: Fairness and punishment in cross-cultural perspective. New York: Russell Sage Foundation.Google Scholar
  20. Franks, N. R., Dornhaus, A., Fitzsimmons, J. P., & Stevens, M. (2003a). Speed versus accuracy in collective decision making. Proceedings of the Royal Society of London B, 270, 2457–2463.CrossRefGoogle Scholar
  21. Franks, N. R., Dornhaus, A., Marshall, J. A. R., & DeChaumeMoncharmont, F.- X. (2009). The dawn of a golden age in mathematical insect sociobiology. In J. Gadau & J. H. Fewell (Eds.), Organization of Insect Societies: From Genome to Sociocomplexity (pp 437–459). Cambridge, Harvard University Press.Google Scholar
  22. Franks, N. R., Mallon, E. B., Bray, H. E., Hamilton, M. J., & Mischler, T. C. (2003b). Strategies for choosing between alternatives with different attributes: Exemplified by house-hunting ants. Animal Behaviour, 65, 215–223.CrossRefGoogle Scholar
  23. Franks, N. R., Pratt, S. C., Mallon, E. B., Britton, N. F., & Sumpter, D. J. (2002). Information flow, opinion polling and collective intelligence in house-hunting social insects. Philosophical Transactions of the Royal Society of London B, 357, 1567–1583.CrossRefGoogle Scholar
  24. Franks, N. R., Stuttard, J. P., Doran, C., Esposito, J. C., Master, M. C., Sendova-Franks, A. B., et al. (2015). How ants use quorum sensing to estimate the average quality of a fluctuating resource. Scientific Reports, 5, 11890.CrossRefGoogle Scholar
  25. Garnier, S., Jost, C., Jeanson, R., Gautrais, J., Asadpour, M., Caprari, G., et al. (2005). Aggregation behaviour as a source of collective decision in a group of cockroach-like-robots. In W. Banzhaf, T. H. Christaller, P. Dittrich, J. T. Kim, & J. Ziegler (Eds.), Advances in artificial life (pp. 169–178). Heidelberg: Springer.CrossRefGoogle Scholar
  26. Giraldo, Y. M., & Traniello, J. F. (2014). Worker senescence and the sociobiology of aging in ants. Behavioral Ecology and Sociobiology, 68, 1901–1919.CrossRefGoogle Scholar
  27. Gowdy, J., & Krall, L. (2015). The economic origins of ultrasociality. Behavioral and Brain Sciences, 22, 1–63.CrossRefGoogle Scholar
  28. Grüner, S., Fietz, A., & Jantsch, A. (2015). Float like a butterfly, decide like a bee. Journal of Bioeconomics. doi:10.1007/s10818-015-9204-5.
  29. Grüter, C., Schuerch, R., Czaczkes, T. J., Taylor, K., Durance, T., Jones, S. M., et al. (2012). Negative feedback enables fast and flexible collective decision-making in ants. PLoS One, 7(9), e44501.CrossRefGoogle Scholar
  30. Harcourt, A. H., & De Waal, F. B. (1992). Coalitions and alliances in humans and other animals. Oxford: Oxford University Press.Google Scholar
  31. Hölldobler, B., & Wilson, E. O. (1990). The ants. Cambridge: Harvard University Press.CrossRefGoogle Scholar
  32. Hölldobler, B., & Wilson, E. O. (2009). The superorganism: The beauty, elegance, and strangeness of insect societies. New York: WW Norton & Company.Google Scholar
  33. Jeanson, R., & Deneubourg, J. L. (2009). Positive feedback, convergent collective patterns and social transitions in arthropods. In J. Gadau & J. H. Fewell (Eds.), Organization of insect societies: From genome to socio-complexity (pp. 460–482). Cambridge: Harvard University Press.Google Scholar
  34. Jeanson, R., Fewell, J. H., Gorelick, R., & Bertram, S. M. (2007). Emergence of increased division of labor as a function of group size. Behavioral Ecology and Sociobiology, 62, 289–298.CrossRefGoogle Scholar
  35. Karaboga, D., & Akay, B. (2009). A survey: Algorithms simulating bee swarm intelligence. Artificial Intelligence Review, 31, 61–85.CrossRefGoogle Scholar
  36. Kube, C. R., & Bonabeau, E. (2000). Cooperative transport by ants and robots. Robotics and Autonomous Systems, 30, 85–101.CrossRefGoogle Scholar
  37. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: Simple building blocks of complex networks. Science, 298, 824–827.CrossRefGoogle Scholar
  38. Muller, M. N., & Mitani, J. C. (2005). Conflict and cooperation in wild chimpanzees. Advances in the Study of Behavior, 35, 275–331.CrossRefGoogle Scholar
  39. Myerscough, M. R., & Oldroyd, B. P. (2004). Simulation models of the role of genetic variability in social insect task allocation. Insectes Sociaux, 51, 146–152.CrossRefGoogle Scholar
  40. Oldroyd, B. P., & Fewell, J. H. (2007). Genetic diversity promotes homeostasis in insect colonies. Trends in Ecology & Evolution, 22, 408–413.CrossRefGoogle Scholar
  41. Passino, K. M. (2005). Biomimicry for optimization, control, and automation. Berlin: Springer Science & Business Media.Google Scholar
  42. Porter, S. D., & Jorgensen, C. D. (1981). Foragers of the harvester ant, pogonomyrmex owyheei: A disposable caste? Behavioral Ecology and Sociobiology, 9, 247–256.CrossRefGoogle Scholar
  43. Pratt, S. C. (2005). Quorum sensing by encounter rates in the ant Temnothorax albipennis. Behavioral Ecology, 16, 488–496.CrossRefGoogle Scholar
  44. Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application. In E. Şahin & W. M. Spears (Eds.), Swarm robotics (pp. 10–20). Berlin: Springer.Google Scholar
  45. Sasaki, T., & Pratt, S.C. (2011). Emergence of group rationality from irrational individuals. Behavioral Ecology, arq198.Google Scholar
  46. Seeley, T. D. (1982). Adaptive significance of the age polyethism schedule in honeybee colonies. Behavioral Ecology and Sociobiology, 11, 287–293.CrossRefGoogle Scholar
  47. Seeley, T. D. (2003). Consensus building during nest-site selection in honey bee swarms: The expiration of dissent. Behavioral Ecology and Sociobiology, 53, 417–424.Google Scholar
  48. Seeley, T. D. (2009). The wisdom of the hive: The social physiology of honey bee colonies. Cambridge: Harvard University Press.Google Scholar
  49. Seeley, T. D. (2010). Honeybee democracy. Princeton: Princeton University Press.Google Scholar
  50. Seeley, T. D., Visscher, P. K., Schlegel, T., Hogan, P. M., Franks, N. R., & Marshall, J. A. (2012). Stop signals provide cross inhibition in collective decision-making by honeybee swarms. Science, 335, 108–111.CrossRefGoogle Scholar
  51. Sendova-Franks, A. B., & Franks, N. R. (1995). Spatial relationships within nests of the ant Leptothorax unifasciatus (Latr.) and their implications for the division of labour. Animal Behaviour, 50, 121–136.CrossRefGoogle Scholar
  52. Simon, H. A. (1982). Models of bounded rationality: Empirically grounded economic reason (Vol. 3). Cambridge: MIT press.Google Scholar
  53. Simon, H. A. (1986). Rationality in psychology and economics. Journal of Business, 59, S209–S224.CrossRefGoogle Scholar
  54. Sumpter, D. J., & Beekman, M. (2003). From nonlinearity to optimality: Pheromone trail foraging by ants. Animal Behavior, 66, 273–280.CrossRefGoogle Scholar
  55. Sumpter, D. J., & Pratt, S. C. (2009). Quorum responses and consensus decision making. Philosophical Transactions of the Royal Society of London B, 364(1518), 743–753.CrossRefGoogle Scholar
  56. Theraulaz, G., Bonabeau, E., & Deneubourg, J. N. (1998). Response threshold reinforcements and division of labour in insect societies. Proceedings of the Royal Society of London B, 265, 327–332.CrossRefGoogle Scholar
  57. Tschinkel, W. R. (2015). The architecture of subterranean ant nests: beauty and mystery underfoot. Journal of Bioeconomics. doi:10.1007/s10818-015-9203-6.
  58. Tschinkel, W. R. (1999). Sociometry and sociogenesis of colonies of the harvester ant, Pogonomyrmex badius: Distribution of workers, brood and seeds within the nest in relation to colony size and season. Ecol Entomol, 24, 222–237.CrossRefGoogle Scholar
  59. Waters, J. S., & Fewell, J. H. (2012). Information processing in social insect networks. PLoS One, 7, e40337.CrossRefGoogle Scholar
  60. Wilson, D. S., & Gowdy, J. M. (2015). Human ultrasociality and the invisible hand: Foundational developments in evolutionary science alter a foundational concept in economics. Journal of Bioeconomics, 17, 37–52.CrossRefGoogle Scholar
  61. Woyciechowski, M., & Kozlowski, J. (1998). Division of labor by division of risk according to worker life expectancy in the honey bee (Apis mellifera L.). Apidologie, 29, 191–205.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Life Sciences and Center for Social Dynamics and ComplexityArizona State UniversityTempeUSA

Personalised recommendations