Skip to main content
Log in

Social Biomimicry: what do ants and bees tell us about organization in the natural world?

  • Published:
Journal of Bioeconomics Aims and scope

Abstract

The social insects serve as exemplars for social biomimicry, the search for social design inspiration from the natural world. Although their group members are individually much simpler than humans, social insect colonies provide elegant tutorials on the large-scale outcomes that can be achieved by social interactions and self-organizational processes. These range from complex physical structures built by collective effort; to exemplars of flexible work organization; to effective consensus building in group decisions. This special issue highlights examples of the lessons to be learned from the bees and ants, providing ways to think about how humans can (and in some cases should not) borrow from social insect rules of organization and their collective outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, C., & McShea, D. W. (2001). Individual versus social complexity, with particular reference to ant colonies. Biological Reviews of the Cambridge Philosophical Society, 76, 211–237.

    Article  Google Scholar 

  • Autumn, K., Dittmore, A., Santos, D., Spenko, M., & Cutkosky, M. (2006). Frictional adhesion: A new angle on gecko attachment. Journal of Experimental Biology, 209, 3569–3579.

    Article  Google Scholar 

  • Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, T. W., et al. (2000). Adhesive force of a single gecko foot-hair. Nature, 405, 681–685.

    Article  Google Scholar 

  • Beckers, R., Deneubourg, J. L., & Goss, S. (1993). Modulation of trail laying in the ant Lasius niger (Hymenoptera: Formicidae) and its role in the collective selection of a food source. Journal of Insect Behavior, 6, 751–759.

    Article  Google Scholar 

  • Ben-Alon, L., Sacks, R., & Grobman, Y. J. (2014). Similarities and differences between humans’ and social insects’ building processes and building behaviors. In: Construction Research Congress 2014: Construction in a Global Network (pp. 51–60). American Society of Civil Engineers. doi:10.1061/9780784413517.006.

  • Benyus, J. M. (1997). Biomimicry. New York: William Morrow.

    Google Scholar 

  • Beshers, S. N., & Fewell, J. H. (2001). Models of division of labor in social insects. Annual Review of Entomology, 46, 413–440.

    Article  Google Scholar 

  • Boesch, C. (1994). Cooperative hunting in wild chimpanzees. Animal Behaviour, 48, 653–667.

    Article  Google Scholar 

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From Natural to Artificial Systems. Oxford: Oxford University Press.

  • Bonabeau, E., Theraulaz, G., Deneubourg, J. L., Aron, S., & Camazine, S. (1997). Self-organization in social insects. Trends in Ecology & Evolution, 12, 188–193.

    Article  Google Scholar 

  • Bourke, A. F., & Franks, N. R. (1995). Social evolution in ants. Princeton: Princeton University Press.

    Google Scholar 

  • Camazine, S., Deneubourg, J., Franks, N. R., Sneyd, J., Theraulaz, G., Bonabeau, E. (2001). Self-Organization in Biological Systems. Princeton, NJ: Princeton University Press.

  • Cassill, D. L., Casella, A., Clayborn, J., Perry, M., & Lagarde, M. (2015). What can ants tell us about collective behavior during a natural catastrophe? Journal of Bioeconomics, 2015, 1–16. doi:10.1007/s10818-015-9195-2.

  • Charbonneau, D., & Dornhaus, A. (2015). When doing nothing issomething. How task allocation strategies compromise betweenflexibility, efficiency, and inactive agents. Journal of Bioeconomics. doi:10.1007/s10818-015-9205-4.

  • Chevallereau, C., Bessonnet, G., Abba, G., & Aoustin, Y. (2013). Bipedal robots: Modeling, design and walking synthesis. New York: Wiley.

    Google Scholar 

  • Czaczkes, T. J., Grüter, C., & Ratnieks, F. L. (2013). Negative feedback in ants: Crowding results in less trail pheromone deposition. Journal of the Royal Society Interface, 10, 20121009.

    Article  Google Scholar 

  • De Waal, F. B. (2000). Primates-a natural heritage of conflict resolution. Science, 289, 586–590.

    Article  Google Scholar 

  • Engel, C. (2011). Dictator games: A meta study. Experimental Economics, 14, 583–610.

    Article  Google Scholar 

  • Ensminger, J., & Henrich, J. (2014). Experimenting with social norms: Fairness and punishment in cross-cultural perspective. New York: Russell Sage Foundation.

    Google Scholar 

  • Franks, N. R., Dornhaus, A., Fitzsimmons, J. P., & Stevens, M. (2003a). Speed versus accuracy in collective decision making. Proceedings of the Royal Society of London B, 270, 2457–2463.

    Article  Google Scholar 

  • Franks, N. R., Dornhaus, A., Marshall, J. A. R., & DeChaumeMoncharmont, F.- X. (2009). The dawn of a golden age in mathematical insect sociobiology. In J. Gadau & J. H. Fewell (Eds.), Organization of Insect Societies: From Genome to Sociocomplexity (pp 437–459). Cambridge, Harvard University Press.

  • Franks, N. R., Mallon, E. B., Bray, H. E., Hamilton, M. J., & Mischler, T. C. (2003b). Strategies for choosing between alternatives with different attributes: Exemplified by house-hunting ants. Animal Behaviour, 65, 215–223.

    Article  Google Scholar 

  • Franks, N. R., Pratt, S. C., Mallon, E. B., Britton, N. F., & Sumpter, D. J. (2002). Information flow, opinion polling and collective intelligence in house-hunting social insects. Philosophical Transactions of the Royal Society of London B, 357, 1567–1583.

    Article  Google Scholar 

  • Franks, N. R., Stuttard, J. P., Doran, C., Esposito, J. C., Master, M. C., Sendova-Franks, A. B., et al. (2015). How ants use quorum sensing to estimate the average quality of a fluctuating resource. Scientific Reports, 5, 11890.

    Article  Google Scholar 

  • Garnier, S., Jost, C., Jeanson, R., Gautrais, J., Asadpour, M., Caprari, G., et al. (2005). Aggregation behaviour as a source of collective decision in a group of cockroach-like-robots. In W. Banzhaf, T. H. Christaller, P. Dittrich, J. T. Kim, & J. Ziegler (Eds.), Advances in artificial life (pp. 169–178). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Giraldo, Y. M., & Traniello, J. F. (2014). Worker senescence and the sociobiology of aging in ants. Behavioral Ecology and Sociobiology, 68, 1901–1919.

    Article  Google Scholar 

  • Gowdy, J., & Krall, L. (2015). The economic origins of ultrasociality. Behavioral and Brain Sciences, 22, 1–63.

    Article  Google Scholar 

  • Grüner, S., Fietz, A., & Jantsch, A. (2015). Float like a butterfly, decide like a bee. Journal of Bioeconomics. doi:10.1007/s10818-015-9204-5.

  • Grüter, C., Schuerch, R., Czaczkes, T. J., Taylor, K., Durance, T., Jones, S. M., et al. (2012). Negative feedback enables fast and flexible collective decision-making in ants. PLoS One, 7(9), e44501.

    Article  Google Scholar 

  • Harcourt, A. H., & De Waal, F. B. (1992). Coalitions and alliances in humans and other animals. Oxford: Oxford University Press.

    Google Scholar 

  • Hölldobler, B., & Wilson, E. O. (1990). The ants. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Hölldobler, B., & Wilson, E. O. (2009). The superorganism: The beauty, elegance, and strangeness of insect societies. New York: WW Norton & Company.

    Google Scholar 

  • Jeanson, R., & Deneubourg, J. L. (2009). Positive feedback, convergent collective patterns and social transitions in arthropods. In J. Gadau & J. H. Fewell (Eds.), Organization of insect societies: From genome to socio-complexity (pp. 460–482). Cambridge: Harvard University Press.

    Google Scholar 

  • Jeanson, R., Fewell, J. H., Gorelick, R., & Bertram, S. M. (2007). Emergence of increased division of labor as a function of group size. Behavioral Ecology and Sociobiology, 62, 289–298.

    Article  Google Scholar 

  • Karaboga, D., & Akay, B. (2009). A survey: Algorithms simulating bee swarm intelligence. Artificial Intelligence Review, 31, 61–85.

    Article  Google Scholar 

  • Kube, C. R., & Bonabeau, E. (2000). Cooperative transport by ants and robots. Robotics and Autonomous Systems, 30, 85–101.

    Article  Google Scholar 

  • Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: Simple building blocks of complex networks. Science, 298, 824–827.

    Article  Google Scholar 

  • Muller, M. N., & Mitani, J. C. (2005). Conflict and cooperation in wild chimpanzees. Advances in the Study of Behavior, 35, 275–331.

    Article  Google Scholar 

  • Myerscough, M. R., & Oldroyd, B. P. (2004). Simulation models of the role of genetic variability in social insect task allocation. Insectes Sociaux, 51, 146–152.

    Article  Google Scholar 

  • Oldroyd, B. P., & Fewell, J. H. (2007). Genetic diversity promotes homeostasis in insect colonies. Trends in Ecology & Evolution, 22, 408–413.

    Article  Google Scholar 

  • Passino, K. M. (2005). Biomimicry for optimization, control, and automation. Berlin: Springer Science & Business Media.

    Google Scholar 

  • Porter, S. D., & Jorgensen, C. D. (1981). Foragers of the harvester ant, pogonomyrmex owyheei: A disposable caste? Behavioral Ecology and Sociobiology, 9, 247–256.

    Article  Google Scholar 

  • Pratt, S. C. (2005). Quorum sensing by encounter rates in the ant Temnothorax albipennis. Behavioral Ecology, 16, 488–496.

    Article  Google Scholar 

  • Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application. In E. Şahin & W. M. Spears (Eds.), Swarm robotics (pp. 10–20). Berlin: Springer.

    Google Scholar 

  • Sasaki, T., & Pratt, S.C. (2011). Emergence of group rationality from irrational individuals. Behavioral Ecology, arq198.

  • Seeley, T. D. (1982). Adaptive significance of the age polyethism schedule in honeybee colonies. Behavioral Ecology and Sociobiology, 11, 287–293.

    Article  Google Scholar 

  • Seeley, T. D. (2003). Consensus building during nest-site selection in honey bee swarms: The expiration of dissent. Behavioral Ecology and Sociobiology, 53, 417–424.

    Google Scholar 

  • Seeley, T. D. (2009). The wisdom of the hive: The social physiology of honey bee colonies. Cambridge: Harvard University Press.

    Google Scholar 

  • Seeley, T. D. (2010). Honeybee democracy. Princeton: Princeton University Press.

    Google Scholar 

  • Seeley, T. D., Visscher, P. K., Schlegel, T., Hogan, P. M., Franks, N. R., & Marshall, J. A. (2012). Stop signals provide cross inhibition in collective decision-making by honeybee swarms. Science, 335, 108–111.

    Article  Google Scholar 

  • Sendova-Franks, A. B., & Franks, N. R. (1995). Spatial relationships within nests of the ant Leptothorax unifasciatus (Latr.) and their implications for the division of labour. Animal Behaviour, 50, 121–136.

    Article  Google Scholar 

  • Simon, H. A. (1982). Models of bounded rationality: Empirically grounded economic reason (Vol. 3). Cambridge: MIT press.

    Google Scholar 

  • Simon, H. A. (1986). Rationality in psychology and economics. Journal of Business, 59, S209–S224.

    Article  Google Scholar 

  • Sumpter, D. J., & Beekman, M. (2003). From nonlinearity to optimality: Pheromone trail foraging by ants. Animal Behavior, 66, 273–280.

    Article  Google Scholar 

  • Sumpter, D. J., & Pratt, S. C. (2009). Quorum responses and consensus decision making. Philosophical Transactions of the Royal Society of London B, 364(1518), 743–753.

    Article  Google Scholar 

  • Theraulaz, G., Bonabeau, E., & Deneubourg, J. N. (1998). Response threshold reinforcements and division of labour in insect societies. Proceedings of the Royal Society of London B, 265, 327–332.

    Article  Google Scholar 

  • Tschinkel, W. R. (2015). The architecture of subterranean ant nests: beauty and mystery underfoot. Journal of Bioeconomics. doi:10.1007/s10818-015-9203-6.

  • Tschinkel, W. R. (1999). Sociometry and sociogenesis of colonies of the harvester ant, Pogonomyrmex badius: Distribution of workers, brood and seeds within the nest in relation to colony size and season. Ecol Entomol, 24, 222–237.

    Article  Google Scholar 

  • Waters, J. S., & Fewell, J. H. (2012). Information processing in social insect networks. PLoS One, 7, e40337.

    Article  Google Scholar 

  • Wilson, D. S., & Gowdy, J. M. (2015). Human ultrasociality and the invisible hand: Foundational developments in evolutionary science alter a foundational concept in economics. Journal of Bioeconomics, 17, 37–52.

    Article  Google Scholar 

  • Woyciechowski, M., & Kozlowski, J. (1998). Division of labor by division of risk according to worker life expectancy in the honey bee (Apis mellifera L.). Apidologie, 29, 191–205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer H. Fewell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fewell, J.H. Social Biomimicry: what do ants and bees tell us about organization in the natural world?. J Bioecon 17, 207–216 (2015). https://doi.org/10.1007/s10818-015-9207-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10818-015-9207-2

Keywords

Navigation