Advertisement

Journal of Bioeconomics

, Volume 17, Issue 3, pp 271–291 | Cite as

The architecture of subterranean ant nests: beauty and mystery underfoot

  • Walter R. Tschinkel
Article

Abstract

Over the 100 million years of their evolution, ants have constructed or occupied nests in a wide range of materials and situations. A large number of ant species excavate nests in the soil, and these subterranean nests have evolved into a wide range of sizes and architectures. On the basis of casts made of such nests, this variation and the patterns that govern it are described. The possible functions of architectural features are discussed, as are the behavioral “rules” through which the nests are created by worker ants.

Keywords

Formicidae Excavation Soil nesting Thermoregulation Division of labor Vertical organization  Pogonmyrmex badius Dorymyrmex bossutus Dorymyrmex bureni Prenolepis imparis Solenopsis invicta Atta Cyphomyrmex rimosus Trachymyrmex septentrionalis Monomorium viridum Dolichoderus mariae Formica pallidefulva Formica archboldi Formica dolosa Camponotus socius Camponotus floridanus Pogonomyrmex californicus Odontomachus brunneus Aphaenogaster floridanus Veromessor pergandei Nylanderia arenivaga Pheidole morrisi 

References

  1. Beshers, S. N., & Fewell, J. H. (2001). Models of division of labor in social insects. Annual Review of Entomology, 46, 413–440.CrossRefGoogle Scholar
  2. Bonabeua, E., Theraulaz, G., Deneubourg, J.-L., Franks, N. R., Rafersberger, O., Joly, J.-L., & Blanco, S. (1998). A model for the emergence of pillars, walls and royal chambers in termite nests. Philosophical Transactions of the Royal Society London B, 353, 1561–1576.Google Scholar
  3. Brian, M. V. (1956). Group form and causes of working inefficiency in the ant Myrmica rubra. Physiological Zoology, 29, 173–194.Google Scholar
  4. Buhl, J., Gautrais, J., Deneubourg, J., Kuntz, P., & Theraulaz, G. (2006). The growth and form of tunnelling networks in ants. Journal of Theoretical Biology, 243, 287–298.CrossRefGoogle Scholar
  5. Camazine, S., & Deneubourg, J.-L. (2003). Self organization in biological systems. Princeton: Princeton University Press.Google Scholar
  6. Cassill, D. L., Tschinkel, W. R., & Vinson, S. B. (2002). Nest complexity, group size and brood rearing in the fire ant, Solenopsis invicta. Insectes Sociaux, 49, 158–163.CrossRefGoogle Scholar
  7. Hart, L. M., & Tschinkel, W. R. (2012). A seasonal natural history of the ant, Odontomachus brunneus. Insectes Sociaux, 59, 45–54.CrossRefGoogle Scholar
  8. Hölldobler, B., & Wilson, E. O. (2009). The superorganism. New York: W.W. Norton and Co.Google Scholar
  9. Jonkman, J. C. M. (1980a). The external and internal structure and growth of nests of the leaf-cutting ant Atta vollenweideri Forel, 1893 (Hym.: Formicidae). Part I. Zeitschrift fur Angewandte Entomologie, 89, 158–173.CrossRefGoogle Scholar
  10. Jonkman, J. C. M. (1980b). The external and internal structure and growth of nests of the leaf-cutting ant Atta vollenweideri Forel, 1893 (Hym.: Formicidae). Part II. Zeitschrift fur Angewandte Entomologie, 89, 158–173.CrossRefGoogle Scholar
  11. Karzai, I. N., & Wenzel, J. (1998). Productivity, individual-level and colony-level flexibility, and organization of work as consequences of colony size. Proceedings of the National Academy of Science, USA, 95, 8665–8669.CrossRefGoogle Scholar
  12. Kwapich, C. M., & Tschinkel, W. R. (2013). Demography, demand, death and the seasonal allocation of labor in the Florida harvester ant (Pogonomyrmex badius). Behavioral Ecology and Sociobiology, 67, 2011–2027.CrossRefGoogle Scholar
  13. Laskis, K. O., & Tschinkel, W. R. (2009). The seasonal natural history of the ant, Dolichoderus mariae (Hymenoptera: Formicidae) in Northern Florida. Journal of Insect Science. http://jinsectscience.oxfordjournals.org/content/9/1/2.
  14. MacKay, W. P. (1983). Stratification of workers in harvester ant nests (Hymenoptera: Formicidae). Journal of the Kansas Entomological Society, 56, 538–542.Google Scholar
  15. Michener, C. D. (1964). Reproductive efficiency in relation to colony size in hymenopterous societies. Insectes Sociaux, 11, 317–342.CrossRefGoogle Scholar
  16. Mikheyev, A. S., & Tschinkel, W. R. (2004). Nest architecture of the ant Formica pallidefulva: Structure, costs and rules of excavation. Insectes Sociaux, 41, 30–36.CrossRefGoogle Scholar
  17. Moreira, A. A., Forti, L. C., Andrade, A. P. P., Boaretto, M. A., & Lopes, J. (2004a). Nest architecture of Atta laevigata (F. Smith, 1858) (Hymenoptera: Formicidae). Studies on Neotropical Fauna and Environment, 39, 109–116.CrossRefGoogle Scholar
  18. Moreira, A. A., Forti, L. C., Boaretto, M. A. C., Andrade, A. P. P., Lopes, J. F. S., & Ramos, V. M. (2004b). External and internal structure of Atta bisphaerica Forel (Hymenoptera: Formicidae) nests. Journal of Applied Entomology, 128, 204–211.CrossRefGoogle Scholar
  19. Penick, C. A., & Tschinkel, W. R. (2008). Thermoregulatory brood transport in the fire ant, Solenopsis invicta. Insectes Sociaux, 55, 176–182.CrossRefGoogle Scholar
  20. Porter, S. D. (1990). Thermoregulation in the fire ant Solenopsis invicta. In Social insects and their environment: Proceedings of the 11th international congress of the IUSSI (p. 660). New York: E. Brill.Google Scholar
  21. Porter, S. D., & Tschinkel, W. R. (1985). Fire ant polymorphism (Hymenoptera: Formicidae): Factors affecting worker size. Annals of the Entomological Society of America, 78, 381–386.CrossRefGoogle Scholar
  22. Rabeling, C., Verhaagh, M., & Engels, W. (2007). Comparative study of nest architecture and colony structure of the fungus-growing ants, Mycocepurus goeldii and M. smithii. Journal of Insect Science, 7, 40. http://jinsectscience.oxfordjournals.org/content/7/1/40.
  23. Rasse, P., & Deneubourg, J. L. (2001). Dynamics of nest excavation and nest size regulation of Lasius niger (Hymenoptera: Formicidae). Journal of Insect Behavior, 14, 433–449.CrossRefGoogle Scholar
  24. Rink, W. J., Dunbar, J. S., Tschinkel, W. R., Kwapich, C., Repp, A., Stanton, W., & Thulman, D. K. (2013). Subterranean transport and deposition of quartz by ants in sandy sites relevant to age overestimation in optical luminescence dating. Journal of Archeological Science, 40, 2217–2226.Google Scholar
  25. Sendova Franks, A. B., & Franks, N. R. (1995). Spatial relationships within nests of the ant Leptothorax unifasciatus (Latr.) and their implications for the division of labour. Animal Behavior, 50, 121–136.CrossRefGoogle Scholar
  26. Solomon, S. E., Mueller, U. G., Schultz, T. R., Currie, C. R., Price, S. L., Oliveira da Silva-Pinhati, A. C., Bacci Jr., M., & Vasconcelos, H. L. (2004). Nesting biology of the fungus growing ants Mycetarotes Emery (Attini, Formicidae). Insectes Sociaux, 51, 333–338.Google Scholar
  27. Tschinkel, W. R. (1987). Seasonal life history and nest architecture of a winter-active ant, Prenolepis imparis. Insectes Sociaux, 34, 143–164.CrossRefGoogle Scholar
  28. Tschinkel, W. R. (1993). Sociometry and sociogenesis in colonies of the fire ant, Solenopsis invicta during one annual cycle. Ecological Monographs, 63, 425–457.CrossRefGoogle Scholar
  29. Tschinkel, W. R. (1999). Sociometry and sociogenesis of colonies of the harvester ant, Pogonomyrmex badius: Distribution of workers, brood and seeds within the nest in relation to colony size and season. Ecological Entomology, 24, 222–237.CrossRefGoogle Scholar
  30. Tschinkel, W. R. (2003). Subterranean ant nest architecture: Trace fossils past and future? Paleogeography, Paleoclimatology and Paleoecology, 192, 321–333.CrossRefGoogle Scholar
  31. Tschinkel, W. R. (2004). The nest architecture of the Florida harvester ant, Pogonomyrmex badius. Journal of Insect Science, 4, 21. http://jinsectscience.oxfordjournals.org/content/4/1/21.
  32. Tschinkel, W. R. (2005). The nest architecture of the ant, Camponotus socius. Journal of Insect Science, 5, 9.Google Scholar
  33. Tschinkel, W. R. (2010). Methods for casting subterranean ant nests. Journal of Insect Science, 10, 88. http://jinsectscience.oxfordjournals.org/content/10/1/88.
  34. Tschinkel, W. R. (2011). The nest architecture of three species of Aphaenogaster in north Florida. Journal of Insect Science. http://jinsectscience.oxfordjournals.org/content/11/1/105.
  35. Tschinkel, W. R. (2013). Florida harvester ant nest architecture, nest relocation and soil carbon dioxide gradients. PLoS ONE, 10, 1371.Google Scholar
  36. Wilson, E. O. (1971). The insect societies. Cambridge, MA: Harvard/Belknap.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Biological ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations