Journal of Bioeconomics

, Volume 16, Issue 3, pp 223–238 | Cite as

Increasing cooperation among plants, symbionts, and farmers is key to past and future progress in agriculture

Article

Abstract

The collective welfare of crop plants, their microbial symbionts, farmers, and society can be undermined by tragedies of the commons. A crop could increase resource allocation to grain if each plant invested less in sending roots into soil already explored by neighbors and less in stem growth. But evolutionary fitness depends on which plants capture the most soil resources and light (e.g., by growing taller than their neighbors), not just on the efficiency with which those resources are used. As for symbionts, with several strains infecting each plant, only host-imposed sanctions limit the fitness of strains that divert more resources to their own reproduction, at the expense of activities that benefit their host plant. Similarly, individual farmers do not necessarily benefit from pest- and resource-management practices that benefit farmers collectively or society as a whole. Plant breeders have increased crop yields by reversing past selection for individual fitness and they could breed for crops that would favor more-cooperative microbial symbionts. Better aligning interests among farmers and society may be more difficult.

Keywords

Agriculture Cooperation Tragedy of the commons  Symbiosis  Plant breeding Pest management 

References

  1. Amani, I., Fischer, R. A., & Reynolds, M. P. (1996). Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. Journal of Agronomy and Crop Science, 176, 119–129.CrossRefGoogle Scholar
  2. Angus, J. F., Jones, R., & Wilson, J. H. (1972). A comparison of barley cultivars with different leaf inclinations. Australian Journal of Agricultural Resech, 23, 945–957.CrossRefGoogle Scholar
  3. Bender, J. (1993). Future harvest: Pesticide-free farming. Lincoln: University of Nebraska Press.Google Scholar
  4. Bethlenfalvay, G. J., Abu-Shakra, S. S., & Phillips, D. A. (1978). Interdependence of nitrogen nutrition and photosynthesis in Pisum sativum L. II. Host plant response to nitrogen fixation by Rhizobium strains. Plant Physiology, 62, 131–133.CrossRefGoogle Scholar
  5. Campbell, D. T. (1969). Reforms as experiments. American Psychologist, 24, 409–429.CrossRefGoogle Scholar
  6. Christin, P., Salamin, N., Kellogg, E. A., Vicentini, A., & Besnard, G. (2009). Integrating phylogeny into studies of C4 variation in the grasses. Plant Physiology, 149, 82–87.CrossRefGoogle Scholar
  7. Condon, A. G., Richards, R. A., Rebetzke, G. J., & Farquhar, G. D. (2004). Breeding for high water-use efficiency. Journal of Experimental Botany, 55, 2447–2460.CrossRefGoogle Scholar
  8. Darwin, C. R. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray.Google Scholar
  9. Davis, A. S., Hill, J. D., Chase, C. A., Johanns, A. M., & Liebman, M. (2012). Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS One, 7, e47149.CrossRefGoogle Scholar
  10. Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.Google Scholar
  11. Denison, R. F. (2000). Legume sanctions and the evolution of symbiotic cooperation by rhizobia. American Naturalist, 156, 567–576.Google Scholar
  12. Denison, R. F. (2012). Darwinian agriculture: How understanding evolution can improve agriculture. Princeton: Princeton University Press.Google Scholar
  13. Denison, R. F., Bledsoe, C., Kahn, M. L., O’Gara, F., Simms, E. L., & Thomashow, L. S. (2003). Cooperation in the rhizosphere and the “free rider” problem. Ecology, 84, 838–845.CrossRefGoogle Scholar
  14. Denison, R. F., Bryant, D. C., & Kearney, T. E. (2004). Crop yields over the first nine years of LTRAS, a long-term comparison of field crop systems in a Mediterranean climate. Field Crops Research, 86, 267–277.CrossRefGoogle Scholar
  15. Denison, R. F., Fedders, J. M., & Harter, B. L. (2010). Individual fitness versus whole-crop photosynthesis: Solar tracking tradeoffs in alfalfa. Evolutionary Applications, 3, 466–472.CrossRefGoogle Scholar
  16. Denison, R. F., & Kiers, E. T. (2011). Life-histories of rhizobia and mycorrhizal fungi. Current Biology, 21, R775–R785.CrossRefGoogle Scholar
  17. Dietz, T., Ostrom, E., & Stern, P. C. (2003). The struggle to govern the commons. Science, 302, 1907–1912.CrossRefGoogle Scholar
  18. Donald, C. M. (1968). The breeding of crop ideotypes. Euphytica, 17, 385–403.CrossRefGoogle Scholar
  19. Duncan, W. G., Williams, W. A., & Loomis, R. S. (1967). Tassels and productivity of maize. Crop Science, 7, 37–39.CrossRefGoogle Scholar
  20. Duvick, D. N., & Cassman, K. G. (1999). Post-green-revolution trends in yield potential of temperate maize in the north-central United States. Crop Science, 39, 1622–1630.CrossRefGoogle Scholar
  21. Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Oxford University Press.Google Scholar
  22. Foley, J. A., Monfreda, C., Ramankutty, N., & Zaks, D. (2007). Our share of the planetary pie. Proceedings of the National Academy of Sciences of the USA, 104, 12585–12586.CrossRefGoogle Scholar
  23. Gardner, A., & Grafen, A. (2009). Capturing the superorganism: A formal theory of group adaptation. Journal of Evolutionary Biology, 22, 659–671.CrossRefGoogle Scholar
  24. Gubry-Rangin, C., Garcia, M., & Bena, G. (2010). Partner choice in Medicago truncatula-Sinorhizobium symbiosis. Proceedeings of the Royal Society of London B, 277, 1947–1951.CrossRefGoogle Scholar
  25. Hardin, G. (1968). The tragedy of the commons. Science, 162, 1243–1248.CrossRefGoogle Scholar
  26. Hutchison, W. D., Burkness, E. C., Mitchell, P. D., Moon, R. D., Leslie, T. W., Fleischer, S. J., Abrahamson, M., Hamilton, K. L., Steffey, K. L., Gray, M. E., Hellmich, R. L., Kaster, L. V., Hunt, T. E, Wright, R. J., Pecinovsky, K., Rabaey, T. L., Flood, B. R., & Raun, E. S. (2010). Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science, 330, 222–225.Google Scholar
  27. Jennings, P. R. (1964). Plant type as a rice breeding objective. Crop Science, 4, 13–15.CrossRefGoogle Scholar
  28. Jennings, P. R., & de Jesus, J. (1968). Studies on competition in rice. I. Competition in Mixtures of Varieties Evolution, 22, 119–124.Google Scholar
  29. Johnson, N. C., Copeland, P. J., Crookston, R. K., & Pfleger, F. L. (1992). Mycorrhizae: Possible explanation for yield decline with continuous corn and soybean. Agronomy Journal, 84, 387–390.CrossRefGoogle Scholar
  30. Kebeish, R., Niessen, M., Thiruveedhi, K., Bari, R., Hirsch, H. J., Rosenkranz, R., Stabler, N., Schonfeld, B., Kreuzaler, F., & Peterhansel, C. (2007). Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nature Biotechnology, 25, 593–599.Google Scholar
  31. Kiers, E. T., & Denison, R. F. (2008). Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annual Review of Ecology, Evolution, and Systematics, 39, 215–236.CrossRefGoogle Scholar
  32. Kiers, E. T., Duhamel, M., Yugandgar, Y., Mensah, J. A., Franken, O., Verbruggen, E., Fellbaum, C., Kowalchuk, G. A., Hart, M. M., Bago, A., Palmer, T. M., West, S. A., Vandenkoornhuyse,P., Jansa, J., & Bucking, H. (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333, 880–882.Google Scholar
  33. Kiers, E. T., Hutton, M. G., & Denison, R. F. (2007). Human selection and the relaxation of legume defences against ineffective rhizobia. Proceedings of the Royal Society of London B, 274, 3119–3126.CrossRefGoogle Scholar
  34. Kiers, E. T., Rousseau, R. A., & Denison, R. F. (2006). Measured sanctions: Legume hosts detect quantitative variation in rhizobium cooperation and punish accordingly. Evolutionary Ecology Research, 8, 1077–1086.Google Scholar
  35. Kiers, E. T., Rousseau, R. A., West, S. A., & Denison, R. F. (2003). Host sanctions and the legume-rhizobium mutualism. Nature, 425, 78–81.CrossRefGoogle Scholar
  36. Kinraide, T. B., & Denison, R. F. (2003). Strong inference, the way of science. American Biology Teacher, 65, 419–424.CrossRefGoogle Scholar
  37. Kumar, A., Turner, N. C., Singh, D. P., Singh, P., & Barr, M. (1999). Diurnal and seasonal patterns of water potential, photosynthesis, evapotranspiration and water use efficiency of clusterbean. Photosynthetica, 37, 601–607.CrossRefGoogle Scholar
  38. Lawlor, D. W. (2013). Genetic engineering to improve plant performance under drought: Physiological evaluation of achievements, limitations, and possibilities. Journal of Experimental Botany, 64, 83–108.CrossRefGoogle Scholar
  39. Matson, P. A., & Vitousek, P. M. (2006). Agricultural intensification: Will land spared from farming be land spared for nature? Conservation Biology, 20, 709–710.CrossRefGoogle Scholar
  40. Muir, W. M. (1996). Group selection for adaptation to multiple-hen cages: Selection program and direct responses. Poultry Science, 75, 447–458.CrossRefGoogle Scholar
  41. Nelson, D. E., Repetti, P. P., Adams, T. R., Creelman, R. A., Wu, J., Warner, D. C., Anstrom, D. C., Bensen, R. J., Castiglioni, P. P., Donnarummo, M. G., Hinchey, B. S., Kumimoto, R. W., Maszle, D. R., Canales, R. D., Krolikowski, K. A., Dotson, S. B., Gutterson, N., Ratcliffe, O. J., & Heard, J. E. (2007). Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proceedings of National Academy of Sciences of the USA, 104, 16450–16455.Google Scholar
  42. Oono, R., Anderson, C. G., & Denison, R. F. (2011). Failure to fix nitrogen by non-reproductive symbiotic rhizobia triggers host sanctions that reduce fitness of their reproductive clonemates. Proceedings of the Royal Society of London B, 278, 2698–2703.CrossRefGoogle Scholar
  43. O’Rourke, M., Rienzo-Stack, K., & Power, A. G. (2011). A multi-scale, landscape approach to predicting insect populations in agro-ecosystems. Ecological Applications, 21, 1782–1791.CrossRefGoogle Scholar
  44. Pendleton, J. W., Smith, G. E., Winter, S. R., & Johnston, T. J. (1968). Field investigations of the relationships of leaf angle in corn (Zea mays L.) to grain yield and apparent photosynthesis. Agronomy Journal, 60, 422–424.CrossRefGoogle Scholar
  45. Phalan, B., Onial, M., Balmford, A., & Green, R. E. (2011). Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science, 333, 1289–1291.CrossRefGoogle Scholar
  46. Ratcliff, W. C., Kadam, S. V., & Denison, R. F. (2008). Polyhydroxybutyrate supports survival and reproduction in starving rhizobia. FEMS Microbiology Ecology, 65, 391–399.CrossRefGoogle Scholar
  47. Rustagi, D., Engel, S., & Kosfeld, M. (2010). Conditional cooperation and costly monitoring explain success in forest commons management. Science, 330, 961–965.CrossRefGoogle Scholar
  48. Sinclair, T. R., Purcell, L. C., & Sneller, C. H. (2004). Crop transformation and the challenge to increase yield potential. Trends in Plant Science, 9, 70–75.CrossRefGoogle Scholar
  49. Subbarao, G. V., Sahrawat, K. L., Nakahara, K., Rao, I. M., Ishitani, M., Hash, C. T., Kishii, M., Bonnett, D. G., Berry, W. L. & Lata, J. C. (2013). A paradigm shift towards low-nitrifying production systems: The role of biological nitrification inhibition (BNI). Annals of Botany, 112, 297–316.Google Scholar
  50. Swenson, W., Wilson, D. S., & Elias, R. (2000). Artificial ecosystem selection. Proceedings of the National Academy of Sciences of the USA, 97, 9110–9114.CrossRefGoogle Scholar
  51. Tabashnik, B. E. (2008). Delaying insect resistance to transgenic crops. Proceedings of the National Academy of Sciences, 105, 19029–19030.CrossRefGoogle Scholar
  52. Vollan, B., & Ostrom, E. (2010). Cooperation and the commons. Science, 330, 923–924.CrossRefGoogle Scholar
  53. Weiner, J., Andersen, S. B., Wille, W. K. M., Griepentrog, H. W., & Olsen, J. M. (2010). Evolutionary agroecology—the potential for cooperative, high-density, weed-suppressing cereals. Evolutionary Applications, 3, 473–479.CrossRefGoogle Scholar
  54. West, S. A., Kiers, E. T., Simms, E. L., & Denison, R. F. (2002). Sanctions and mutualism stability: Why do rhizobia fix nitrogen? Proceedings of the Royal Society of London B, 269, 685–694.CrossRefGoogle Scholar
  55. Zalucki, M. P., Adamson, D., & Furlong, M. J. (2009). The future of IPM: Whither or wither? Australian Journal of Entomology, 28, 85–96.CrossRefGoogle Scholar
  56. Zhang, D. Y., Sun, G. J., & Jiang, X. H. (1999). Donald’s ideotype and growth redundancy: A game theoretical analysis. Field Crops Research, 61, 179–187.CrossRefGoogle Scholar
  57. Zhu, X. G., Portis, A. R., & Long, S. P. (2004). Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell and Environment, 27, 155–165.CrossRefGoogle Scholar
  58. Zhu, L., & Zhang, D. Y. (2013). Donald’s ideotype and growth redundancy: A pot experimental test using an old and a modern spring wheat cultivar. PLoS One, 8, e70006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Ecology Evolution & BehaviorUniversity of MinnesotaSaint PaulUSA

Personalised recommendations