Skip to main content
Log in

Parental preference for investment risk incites family strife

  • Published:
Journal of Bioeconomics

Abstract

Older stronger siblings in many birds and mammals enjoy decisive and often lethal advantages in sibling competitions by virtue of being born or hatching first. Asynchronous hatching in birds divides the brood into core (advantaged) and marginal (disadvantaged) elements generating an asymmetric sibling rivalry with often fatal outcomes. Given that these asymmetries are under parental control, the obvious question is why parents seem to incite family conflict. Here I show in a model system (an altricial songbird) that family strife in the form of fatal sibling rivalry arises as a consequence of parental investor’s appetite for risk: in accord with an axiom of investment theory, obtaining greater potential rewards required taking greater risks. I analyze the risk and reward of investment in different family structures using a tool borrowed from modern portfolio theory, and show that the most successful parents gambled with brood size, placing bets on incipient families that often proved too large. Failed bets triggered a fatal sibling rivalry for insufficient resources. Parents driven to maximize reproductive success incited family strife among their offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander R. M. (1996) Optima for animals (2nd ed.). Princeton University Press, Princeton, NJ

    Google Scholar 

  • Black F., Scholes M. (1973) The pricing of options and corporate liabilities. Journal of Political Economy 81: 637–654

    Article  Google Scholar 

  • Brealey R., Myers S. (2003) Principles of corporate finance. McGraw-Hill, New York

    Google Scholar 

  • Cassill D. L. (2003) Skew selection: Nature favors a trickle-down distribution of resources in ants. Journal of Bioeconomics 5: 83–96

    Article  Google Scholar 

  • Cassill D. L. (2006) Why skew selection, a model of parental exploitation, should replace kin selection. Journal of Bioeconomics 8: 101–119

    Article  Google Scholar 

  • Cassill D. L., Watkins A. (2010) The emergence of cooperative hierarchies through natural selection processes. Journal of Bioeconomics 12: 29–42

    Article  Google Scholar 

  • Donaldson-Matasci M. C., Lachmann M., Bergstrom C. T. (2008) Phenotypic diversity as an adaptation to environmental uncertainty. Evolutionary Ecology Research 10: 493–515

    Google Scholar 

  • Elton E. J., Gruber M. J., Brown S. J., Goetzmann W. (2007) Modern portfolio theory and investment analysis (7th ed.). Wiley, New York

    Google Scholar 

  • Forbes S. (2005) A natural history of families. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Forbes S. (2009) Portfolio theory and how parent birds manage investment risk. Oikos 118: 161–169

    Article  Google Scholar 

  • Forbes S. (2010) Family structure and variation in reproductive success in blackbirds. Behavioural Ecology and Sociobiology 64: 475–483

    Article  Google Scholar 

  • Forbes S. (2011) Social rank governs the effective environment of siblings. Biology Letters 7: 346–348

    Article  Google Scholar 

  • Forbes S., Glassey B. (2000) Asymmetric sibling rivalry and nestling growth in red-winged blackbirds. Behavioural Ecology and Sociobiology 48: 413–417

    Article  Google Scholar 

  • Forbes S., Glassey B., Thornton S., Earle L. (2001) The secondary adjustment of clutch size in red-winged blackbirds (Agelaius phoeniceus). Behavioural Ecology and Sociobiology 50: 37–44

    Article  Google Scholar 

  • Forbes S., Wiebe M. (2010) Egg size and asymmetric sibling rivalry in red-winged blackbirds. Oecologia 163: 361–372

    Article  Google Scholar 

  • Forbes L.S., Mock D.W. (1996) Food information and avian brood reduction. Ecoscience 3: 45–53

    Google Scholar 

  • Forbes L. S., Thornton S., Glassey B., Forbes M., Buckley N. J. (1997) Why parent birds play favourites. Nature 390: 351–352

    Article  Google Scholar 

  • Ghiselin M. T. (1974) The economy of nature and the evolution of sex. University of California Press, Berkeley, CA

    Google Scholar 

  • Glassey B., Forbes S. (2002a) Begging and asymmetric nestling competition. In: Wright J., Leonard M. L. (eds) Evolution of nestling begging: Competition, cooperation and communication. Kluwer Academic, Dordrecht, pp 269–281

    Google Scholar 

  • Glassey B., Forbes S. (2002b) Muting individual nestlings reduces parental foraging for the brood. Animal Behavior 63: 779–786

    Article  Google Scholar 

  • Godfray H. C. J., Parker G. A. (1991) Clutch size, fecundity and parent–offspring conflict. Philosophical Transactions of the Royal Society of London B 332: 67–79

    Article  Google Scholar 

  • Greene C. M., Hall J. E., Guilbault K. R., Quinn T. P. (2009) Improved viability of populations with diverse life-history portfolios. Biology Letters 6: 382–386

    Article  Google Scholar 

  • Groothuis T. G. G., Muller W., von Engelhardt N., Carere C., Eising C. (2005) Maternal hormones as a tool to adjust offspring phenotype in avian species. Neuroscience and Biobehavioral Reviews 29: 329–352

    Article  Google Scholar 

  • Hall M. E., Blount J., Forbes S., Royle N. J. (2010) Does oxidative stress mediate the trade-off between growth and self-maintenance in structured families?. Functional Ecology 24: 365–373

    Article  Google Scholar 

  • Hammerstein P., Selten R. (1994) Game theory and evolutionary biology. In: Auman R., Hart S. (eds) Handbook of game theory with economic applications. Elsevier Science, Amsterdam, pp 931–962

    Google Scholar 

  • Hudson R., Trillmich F. (2008) Sibling competition and cooperation in mammals: Challenges, developments and prospects. Behavioural Ecology and Sociobiology 62: 299–307

    Article  Google Scholar 

  • Kahneman D., Tversky A. (1996) On the reality of cognitive illusions. Psychological Review 103: 582–591

    Article  Google Scholar 

  • Kitano, H. (2010). Violations of robustness tradeoffs. Molecular Systems Biology, 6, Article number 384. doi:10.1038/msb.2010.40.

  • Lack D. (1947) The significance of clutch size. Ibis 89: 302–352

    Article  Google Scholar 

  • Leonard J. L. (1999) Modern portfolio theory and the prudent hermaphrodite. Invertebrate Reproduction and Development 36: 129–135

    Article  Google Scholar 

  • Lintner J. (1965) The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics 47: 13–37

    Article  Google Scholar 

  • Magrath R. D. (1990) Hatching asynchrony in altricial birds. Biological Reviews 65: 587–622

    Article  Google Scholar 

  • Markowitz H. M. (1991a) Foundations of portfolio theory. Journal of Finance 46: 469–477

    Google Scholar 

  • Markowitz H. M. (1991b) Portfolio selection: Efficient diversification of investments (2nd ed.). Blackwell, Malden, MA

    Google Scholar 

  • Maynard Smith J. (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Google Scholar 

  • Maynard Smith J., Price G. R. (1973) The logic of animal conflict. Nature 246: 15–18

    Article  Google Scholar 

  • Mock D. W., Forbes L. S. (1995) The evolution of parental optimism. Trends in Ecology and Evolution 10: 130–134

    Article  Google Scholar 

  • Mock D. W., Parker G. A. (1997) The evolution of sibling rivalry. Oxford University Press, Oxford

    Google Scholar 

  • Mossin J. (1966) Equilibrium in a capital asset market. Econometrica 34: 768–783

    Article  Google Scholar 

  • Murphy G. I. (1968) Pattern in life history and the environment. American Naturalist 102: 391–403

    Article  Google Scholar 

  • Parker G. A., Maynard Smith J. (1990) Optimality theory in evolutionary biology. Nature 348: 27–33

    Article  Google Scholar 

  • Parker G. A., Mock D. W. (1987) Parent–offspring conflict and clutch size. Evolutionary Ecology 1: 161–174

    Article  Google Scholar 

  • Parker G. A., Royle N. J., Hartley I. R. (2002) Intrafamilial conflict and parental investment: A synthesis. Philosophical Transactions of the Royal Society of London B 357: 295–307

    Article  Google Scholar 

  • Real L. A. (1980) Fitness, uncertainty, and the role of diversification in evolution and behavior. American Naturalist 115: 623–638

    Article  Google Scholar 

  • Rödel H. G., Bautista A., García-Torres E., Martínez-Gómez M., Hudson R. (2008) Why do heavy littermates grow better than lighter ones? A study in wild and domestic European rabbits. Physiology and Behavior 95: 441–448

    Article  Google Scholar 

  • Royle N. J., Surai P. F., Hartley I. R. (2001) Maternally derived androgens and antioxidants in bird eggs: Complementary but opposing effects?. Behavioral Ecology 12: 381–385

    Article  Google Scholar 

  • Saether B.-E. (1990) Age-specific variation in reproductive performance in birds. In: Power D. M. (eds) Current ornithology. Plenum Press, New York, pp 251–283

    Google Scholar 

  • Saino N., Ferrari R. P., Martinelli R., Romano M., Rubolini D., Møller A. P. (2002) Early maternal effects mediated by immunity depend on sexual ornamentation of the male partner. Proceedings of the Royal Society London Series B 269: 1005–1009

    Article  Google Scholar 

  • Schindler D. E., Hilborn R., Chasco B., Boatright C. P., Quinn T. P., Rogers L. A., Webster M. S. (2010) Population diversity and the portfolio effect in an exploited species. Nature 465: 609–612

    Article  Google Scholar 

  • Schwagmeyer P. L., Mock D. W. (2008) Parental provisioning and offspring fitness: Size matters. Animal Behavior 75: 291–298

    Article  Google Scholar 

  • Sharpe W. F. (1964) Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance 19: 425–442

    Google Scholar 

  • Slagsvold T., Sandvik J., Rofstad G., Lorentsen O., Husby M. (1984) On the adaptive value of intraclutch egg-size variation in birds. Auk 101: 685–697

    Google Scholar 

  • Sockman K. W., Sharp P. J., Schwabl H. (2006) Orchestration of avian reproductive effort: An integration of the ultimate and proximate bases for flexibility in clutch size, incubation behaviour, and yolk androgen deposition. Biological Reviews 81: 629–666

    Article  Google Scholar 

  • Stephens D. W., Krebs J. R. (1986) Foraging theory. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Teather K. (1992) An experimental study of competition for food between male and female nestlings of the red-winged blackbird. Behavioural Ecology and Sociobiology 31: 81–88

    Article  Google Scholar 

  • Trillmich F., Wolf J. B. W. (2008) Parent–offspring and sibling conflict in Galápagos fur seals and sea lions. Behavioural Ecology and Sociobiology 62: 362–375

    Article  Google Scholar 

  • Trivers R. L. (1972) Parental investment and sexual selection. In: Campbell B. (eds) Sexual selection and the descent of man, 1871–1971. Aldine, Chicago, IL, pp 136–179

    Google Scholar 

  • Tversky A., Kahneman D. (1974) Judgment under uncertainty: Heuristics and biases. Science 185: 1124–1131

    Article  Google Scholar 

  • Weatherhead P. J., Dufour L. W. (2000) Fledging success as an index of recruitment in red-winged blackbirds. Auk 117: 627–633

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Forbes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forbes, S. Parental preference for investment risk incites family strife. J Bioecon 14, 115–128 (2012). https://doi.org/10.1007/s10818-011-9122-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10818-011-9122-0

Keywords

Navigation