Skip to main content

Advertisement

Log in

Bio-economic modelling of soil erosion externalities and policy options: a Tunisian case study

  • Published:
Journal of Bioeconomics Aims and scope

Abstract

Soil erosion is one of the most important of today’s environmental externalities and a major threat to sustainability of agricultural system. It constitutes the most widespread forms of land degradation throughout the world. The aim of this paper is to estimate the amount of soil erosion generated by the current cropping systems in Tunisia and to assess the economic and ecological impacts of policy instruments designed to handle this problem. The analysed policy options are based on soil conservation practices and direct incentive farming anti-erosive measures. The selected measures are the reduction of tillage, the avoidance of bare fallow and the use of legume-based crop rotation. A bio-economic modelling framework coupling the biophysical model EPIC to a non-linear dynamic programming farm model was used for this impact analysis. It was performed in a set of representative farms belonging to a region in North-Eastern Tunisia (Zaghouan) strongly affected by this phenomenon. The main finding of this research is the non-convexity of the crop yield—soil erosion space. That is, the use of more intensive techniques to increase productivity (i.e. crop yield) may be accompanied by rough changes in soil erosion (damage) curves, manifested either by non-monotony or non-convexity. In term of policy options and because of giving up convexity assumptions, incentive anti-erosive measures appear more efficient than conventional environmental policies such as Pigouvian taxes or quota systems. The implementation of soil conservation practices would leads to a net decrease in soil erosion and an increase in farm income. However, with the current interest rate of 7% the possible rise in income is not enough to stimulate farmers to invest on these practices. A maximum rate of 4% would be necessary to make this policy option more effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdouli, H., & Kraiem, K. (1990). Intake, digestion and feeding behaviour of the one-humped stall fed straw-based diets. Livestock Research for Rural Development, 2. http://www.cipav.Org.co/Irrd/Irrd2/2/abdouli.htm.

  • Barbier B., Benoit-Cattin M. (1997) Viabilité à moyen et long-terme d’un système agraire villageois d’Afrique Sudano-Sahélienne: Le cas de Bala au Burkina Faso. Economie Rurale 239: 35–51

    Google Scholar 

  • Barbier B., Bergeron G. (1999) Impact of policy interventions on land management in Honduras: Results of a bio-economic model. Agricultural Systems 59: 1–16

    Article  Google Scholar 

  • Baumol W. J. (1964) External economies and the second order optimality conditions. American Economic Review 54: 358–372

    Google Scholar 

  • Baumol W. J., Bradford D. F. (1972) Detrimental externalities and non-convexity of the production set. Economica 39: 160–176

    Article  Google Scholar 

  • Baumol W. J., Oates W. E. (1975) The theory of environmental policy: Externalities public outlays, and the quality of life. Prentice-Hall INC, New Jersey

    Google Scholar 

  • Berck P., Stohs S., Geoghegan J., Strong A. (2000) Test of the von Liebig hypothesis. American Journal of Agricultural Economics 82(4): 948–955

    Article  Google Scholar 

  • Berentsen P. B. M. (2003) Effects of animal productivity on the costs of complying with environmental legislation in Dutch dairy farming. Livestock Production Science 84: 183–194

    Article  Google Scholar 

  • Bonnieux F., Desaigues B. (1998) Economie et politiques de l’environnement. Dalloz, Paris, p 327

    Google Scholar 

  • Boussemart J. P., Jacquet F., Flichman G., Lefer B. H. (1996) Prévoir les effets de la réforme de la politique agricole commune sur deux régions agricoles françaises : application d’un modèle bio économique. Canadian Journal of Agricultural Economics 44: 121–138

    Article  Google Scholar 

  • Bouzaher A., Shogren J. F., Gassman P. W., Holtkamp D. J., Manale A. P. (1995) Use of a linked biophysical and economic modelling system to evaluate risk-benefit tradeoffs of corn herbicide use in the midwest. In: Leng M. L. (eds) Agrochemical environmental fate: state of the art. CRC Press, Boca Raton, FL, pp 369–381

    Google Scholar 

  • Boyd J. H., Conley J. P. (1997) Fundamental nonconvexities in Arrovian markets and a Coasian solution to the problem of externalities. Journal of Economic Theory 72(2): 388–407

    Article  Google Scholar 

  • Brisson N., Mary B., Ripoche D., Jeuffroy M. H., Ruget F., Nicoullaud B., Gate P., Devienne-Barret F., Antonioletti R., Durr C., Richard G., Beaudoin N., Recous S., Tayot X., Plenet D., Cellier P., Machet J.-M., Meynard J.-M., Delecolle R. (1998) STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 18: 311–346

    Article  Google Scholar 

  • Burrows P. (1986) Non-convexity induced by external costs on production: Theoretical curio or policy dilemma?. Journal of Environmental Economics and Management 13: 101–128

    Article  Google Scholar 

  • Burrows P. (1995) Non-convexities and the theory of external cost. In: Bromley D. (eds) The handdbook of environmental economics. Basil Blackwell Ltd, UK, p 437

    Google Scholar 

  • Cabelguenne, M., & Debaeke P. H. (1995). Manuel d’utilisation du modèle EWQTPR EPIC-PHASE temps réel, INRA, Toulouse.

  • CDCGE. (2006). Plan d’action regional de lutte contre la désertification du gouvernorat de Zaghouan. Direction Générale de l’Environnement et de la Qualité de la Vie. Rapport Final, 95 p.

  • Chambers R. G., Lichtenberg E. (1996) A nonparametric approach to the von Liebig-Paris technology. American Journal of Agricultural Economics 78(2): 373–386

    Article  Google Scholar 

  • Chenery H. (1949) Engineering production functions. Quarterly Journal of Economics 634: 507–531

    Article  Google Scholar 

  • Clark C. W. (1990) Mathematical bioeconomics: The optimal management of renewable resources (2nd ed.). Wiley-Intersciences, New York

    Google Scholar 

  • De Wit C. T. (1992) Resource use efficiency in agriculture. Agricultural Systems 40: 125–151

    Article  Google Scholar 

  • Deybe D. (2002) Bio-economic modelling for better quantification of the environmental impacts of agriculture. Montpellier, CIRAD

    Google Scholar 

  • Deybe D., Flichman G. (1991) A regional agricultural model using a plant growth simulation program as activities generator. Agricultural Systems 37: 369–385

    Article  Google Scholar 

  • Donaldson A. B., Flichman G., Webster J. P. (1995) Integrating agronomic and economic models for policy analysis at the farm level: The impact of CAP reform in two European regions. Agricultural Systems 48: 163–178

    Article  Google Scholar 

  • Ezekiel M. (1938) The cobweb theorem. Quarterly Journal of Economics 52: 255–280

    Article  Google Scholar 

  • Flichman G., Jacquet F. (2003) Le couplage des modèles agronomiques et économiques—acquis et perspectives. Cahiers d’économie et de sociologie rurales 67: 52–69

    Google Scholar 

  • Foltz J. C., Lee J. G., Marshall A. M., Preckel P. V. (1995) Multi-attribute assessment of alternative cropping systems. American Journal of Agricultural Economics 77: 408–420

    Article  Google Scholar 

  • Freund R. J. (1956) The introduction of risk into a programming model. Econometrica 21: 253–263

    Article  Google Scholar 

  • Hanley N., Shogren J.F., White B. (1997) Environmental economics in theory and in practice. Macmillan Press LTD, London, p 464

    Google Scholar 

  • Hanley N., Spash C., Walker L. (1995) Problems in valuing the benefits of biodiversity protection. Environmental and Resource Economics 5: 249–272

    Article  Google Scholar 

  • Hazell P. B. R., Norton R. D. (1986) Mathematical programming for economic analysis in agriculture. Macmillan Publishing Co, New York

    Google Scholar 

  • Howitt R. E. (1995) Positive mathematical programming. American Journal of Agricultural Economics 77: 329–342

    Article  Google Scholar 

  • Judez L., Chaya C., Martinez S., Gonzalez A. A. (2001) Effects of the measures envisaged in “Agenda 2000” on arable crop producers and beef and veal producers: An application of Positive Mathematical Programming to representative farms of a Spanish region. Agricultural Systems 67: 121–138

    Article  Google Scholar 

  • Kirschke, D., Odening, M., Doluschitz, R., Fock, T., Hagedorn, K., Rost, & von Witzke, H. (1998). Weiterentwicklung der EU-Agrarpolitik: Aussichten für die neuen Bundesländer. Agrarökonomische Monographien und Sammelwerke Kiel: Wissenschaftsverlag Vauk Kiel KG.

  • Kula E. (1994) Economics of natural resources, the environment and policies (2nd ed.). Chapman & Hall, London

    Google Scholar 

  • Kurz H. (2001) Critical essays on Piero Sraffa’s legacy in Economics. Cambridge University Press, Cambridge

    Google Scholar 

  • Lakshminarayan P. G., Gassman P. W., Bouzaher A., Izaurralde R. C. (1996) A meta modelling approach to evaluate agricultural policy impact on soil degradation in Western Canada. Canadian Journal of Agricultural Economics 44: 277–294

    Article  Google Scholar 

  • Leonard R. A., Knisel W. G., Still D. A. (1987) GLEAMS: Groundwater loading effects of agricultural management systems. Transactions of the ASAE 305: 1403–1418

    Google Scholar 

  • Louhichi, K. (2001). Essai de modélisation bioéconomique de la relation agriculture-environnement. Le cas de l’érosion en Tunisie. Thèse de doctorat de l’université de Montpellier I. Montpellier, 250 p.

  • Louhichi K., Alary V., Grimaud P. (2004) A dynamic model to analyse the bio-technical and socio- economic interactions in dairy farming systems on the Réunion Island. Animal Research 53: 363–382

    Article  Google Scholar 

  • Louhichi K., Flichman G., Zekri S. (1999) Un modèle bioéconomique pour analyser l’impact des politiques de conservation des eaux et du sol : le cas d’une exploitation agricole tunisienne. Economie rurale 252: 55–64

    Article  Google Scholar 

  • Mas-Collel A., Whinston M. D., Green J. R. (1995) Microeconomic theory. Oxford University Press, Oxford

    Google Scholar 

  • Mimouni M., Zekri S., Flichman G. (2000) Modelling the trade-offs between farm income and the reduction of erosion and nitrate pollution. Annals of Operations Research 94: 91–103

    Article  Google Scholar 

  • Mottelet, S., & Elbagdouri, M. (2000). Optimisation non linéaire. Université de Technologie de Compiègne, 227 p.

  • OECD. (1993). Agricultural and environmental policy integration: Recent progress and new directions. Paris, 95 p.

  • Oldeman, L. R., van Engelen, V. W. P., & Pulles, J. H. M. (1990). The extent of human-induced soil degradation. In L. R. Oldeman, R. T. A. Hakkeling, & W. G. Sombroek (Eds.), World map of the status of human-induced soil degradation: An explanatory note, rev. 2nd ed. Wageningen, the Netherlands: International Soil Reference and Information Centre, Table 7.

  • Onate J. J., Atance I., Bardaji I., Llusia D. (2006) Modelling the effects of alternative CAP policies for the Spanish high-nature value cereal-steppe farming systems. Agricultural Systems 94: 247–260

    Article  Google Scholar 

  • Paris Q. (1992) The von Liebig hypothesis. American Journal of Agricultural Economics 74(4): 1019–1028

    Article  Google Scholar 

  • Passet R. (1996) L’économie et le vivant. Economica, Paris, p 291

    Google Scholar 

  • Pearce D.W., Turner R.K. (1990) Economics of natural resources and the environment. Hemel Hempstead, Harvester Wheatsheaf

    Google Scholar 

  • Riesgo L., Gomez-Limon J. A. (2006) Multi-criteria policy scenario analysis for public regulation of irrigated agriculture. Agricultural Systems 91: 1–28

    Article  Google Scholar 

  • Robinson J. (1969) The accumulation of capital. Macmillan, London

    Google Scholar 

  • Ruben H. M., Arie K. (1998) Integrating agricultural research and policy analysis: Analytical framework and policy applications for bioeconomic modelling. Agricultural Systems 58: 331–349

    Article  Google Scholar 

  • Ruben R., van Ruijven A. (2001) Technical coefficients for bio-economic farm household models: A meta-modeling approach with applications for Southern Mali. Ecological Economics 36: 427–441

    Article  Google Scholar 

  • Sadoulet E., Janvry A. (1995) Quantitative development policy analysis. John Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Schuler, J., & Sattler, C. (2008). The estimation of agricultural policy effects on soil erosion—an application for the bio-economic model MODAM. Land Use Policy. doi:10.1016/j.landusepol.2008.05.001.

  • Semaan J., Flichman G., Scardigno A., Steduto P. (2007) Analysis of nitrate pollution control policies in the irrigated agriculture of Apulia Region (Southern Italy): A bio-economic modelling approach. Agricultural Systems 94: 357–367

    Article  Google Scholar 

  • Sraffa P. (1960) Production of commodities by means of commodities: Prelude to a critique of economic theory. Cambridge University Press, Cambridge

    Google Scholar 

  • Starrett D. A. (1972) Fundamental non convexities in the theory of externalities. Journal of Economic Theory 4: 180–199

    Article  Google Scholar 

  • Stockle C. O., Martin S., Campbell G. S. (1994) CropSyst, a cropping systems model: water/nitrogen budgets and crop yield. Agricultural System 46: 335–359

    Article  Google Scholar 

  • Van Ittersum M. K., Ewert F., Heckelei T., Wery J., Alkan Olsson J., Andersen E., Bezlepkina I., Brouwer F., Donatelli M., Flichman G., Olsson L., Rizzoli A. E., van der Wal T., Wien J. E., Wolf J. (2008) Integrated assessment of agricultural systems—a component-based framework for the European Union (SEAMLESS). Agricultural Systems 96: 150–165

    Article  Google Scholar 

  • Vatn A., Bakken L.R., Bleken M.A., Botterweg P., Lundeby H., Romstad E.M., Rørstad P.K., Vold A. (1996) Policies for reduced nutrient losses and erosion from norwegian agriculture. Norwegian Journal of Agricultural Sciences 23: 1–319

    Google Scholar 

  • Vatn A., Bakken L., Botterweg P., Romstad E. (1999) ECECMOD: An interdisciplinary modelling system for analyzing nutrient and soil losses from agriculture. Ecological Economics 302: 189–205

    Article  Google Scholar 

  • Vermersch, D. (1992). Internalisation efficiente et agriculture durable. Economie Rurale, 208–209, 144–148.

  • Veysset P., Bebin D., Lherm M. (2005) Adaptation to Agenda 2000 (CAP reform) and optimisation of the farming system of French suckler cattle farms in the Charolais area: A model-based study. Agricultural Systems 83: 179–202

    Article  Google Scholar 

  • Vicien C. (1991) Les modèles de simulation comme fonctions de production. Economie Rurale 204: 46–50

    Article  Google Scholar 

  • Waugh, F. V. (1964). Demand and price analysis, some examples from agriculture. Technical Bulletin No. 1316, U.S. Department of Agriculture, Washington, DC.

  • Williams J. R., Jones C. A., Dyke P. T. (1984) A modelling approach to determining the relationship between erosion and soil productivity. Transactions of the ASAE 271: 129–144

    Google Scholar 

  • Wischmeier W. H. (1976) Use and misuse of the universal soil loss equation. Journal of Soil and Water Conservation 31(1): 5–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Louhichi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louhichi, K., Flichman, G. & Boisson, J.M. Bio-economic modelling of soil erosion externalities and policy options: a Tunisian case study. J Bioecon 12, 145–167 (2010). https://doi.org/10.1007/s10818-010-9082-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10818-010-9082-9

Keywords

JEL Classification

Navigation