Advertisement

Journal of Bioeconomics

, Volume 7, Issue 1, pp 73–84 | Cite as

The Social Gene

  • Deby CassillEmail author
Article

Synopsis

Skew selection is a multiple-selection model (not to be confused with a multi-level selection model) that explains the inherent duality of social behavior from an individualistic, self-preservation point of view. The dual behaviors of social beings are ‘greed’ and ‘sharing’. Greed produces resource stockpiles. Stockpiles buffer an individual from famine. Sharing aggregates individuals into groups. Groups buffer an individual from predation through safety-in-numbers. In this paper, skew selection is applied to genes as a potential solution for two genomic puzzles: (1) junk DNA; and (2) the C-value enigma. Junk DNA refers to the large number of non-coding DNA sequences within a genome. Skew selection hypothesizes that, when genes are exposed to agents of predation such as point mutations, viral infections or chromosomal crossovers, genes that share resources with a large number of junk DNA sequences will survive longer than genes that do not share. The C-value enigma refers to the lack of relationship between genomic size and animal complexity. Skew selection hypothesizes that genomic size and animal complexity evolve independently of each other. Genomic size (i.e., junk DNA) shields genes from agents of mutation, viruses or chromosomal crossovers. Animal complexity (i.e., gene diversity) buffers genes from resource scarcity by allowing organisms to exploit diverse resources. In conclusion, by viewing gene survival through the lens of skew selection, molecular biologists gain insight into the evolution of genomic size and animal complexity as independent survival strategies of self-interested genes facing multiple agents of selection.

Keywords

competition cooperation evolution hierarchy skew 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, Eldridge S., Walter, R. Tschinkel 2001Mechanisms of population regulation in the fire ant Solenopsis invicta: an experimental studyJournal of Animal Ecology70355369Google Scholar
  2. Alcock, John 1979Animal behavior: an evolutionary approachSinauer Assoc. IncSunderland, MassGoogle Scholar
  3. Axelrod, Robert 1981The evolution of cooperationBasic BooksNew YorkGoogle Scholar
  4. Bernardi, Giacomo 1995The human genome: organization and evolutionary historyAnnual Review of Genetics29445476Google Scholar
  5. Campbell, Neil A, Jane, B. Reece, Lawrence, G. Mitchell, Martha, R. Taylor 2003Biology concepts and connectionsBenjamin CummingsSan FranciscoGoogle Scholar
  6. Cassill, Deby 2002Yoyo-bang: a risk aversion investment strategy by a perennial insect societyOecologia132150158Google Scholar
  7. Cassill, Deby 2003aSkew selection: nature favors a trickledown distribution of resources in antsJournal of Bioeconomics58396Google Scholar
  8. Cassill, Deby 2003bRules of supply and demand regulate recruitment to food in an ant societyBehavior Ecology and Sociobiology54441450Google Scholar
  9. Curtis, Helena 1968BiologyWorth PublishersNew York(1980 edition)Google Scholar
  10. Darwin, Charles 1859The origin of speciesJ.Murray. Penguin BooksLondon(1968 edition)Google Scholar
  11. Dawkins, Richard 1976The selfish geneOxford University PressOxfordGoogle Scholar
  12. Waal, Frans 1996Good natured: the origins of right and wrong in humans and other animalsHarvard University PressCambridgeGoogle Scholar
  13. Doolittle, W. Ford 1989Hierarchical approaches to genome evolutionCanadian Journal of Philosophy14101133Google Scholar
  14. Drickamer, Lee C., Stephen, H.Vessey 1982Animal behavior: concepts, processes, and methodsWillard Grant PressBoston, MAGoogle Scholar
  15. Drlica, Karl 1997Understanding DNA and gene cloningJohn Wiley SonsNew YorkGoogle Scholar
  16. Frank, Carolin A., Haleh, Amiri, Andersson, G.E. 2002Genome deterioration: loss of repeated sequences and accumulation of junk DNAGenetica115112Google Scholar
  17. Frederick, W.C. 1995Values, nature, and culture in the American geneOxford University PressNew YorkGoogle Scholar
  18. Frederick, W.C. 1998Creatures, genes, communities, chaos, complexityBusiness and Society37358389Google Scholar
  19. Ghiselin, Michael T. 1974The economy of nature and the evolution of sexUniversity of California PressBerkeleyCAGoogle Scholar
  20. Gregory, T. Ryan. 2003Variation across amphibian species in the size of the nucler genome supports a pluralistic, hierarchical approach to the C-value enigmaBiological Journal of the Linnean Society79329339Google Scholar
  21. Hamilton, William D. 1971Geometry for the selfish herdJournal of Theoretical Biology31295311Google Scholar
  22. Hirshleifer, Jack 1999There are many evolutionary pathways to cooperationJournal of Bioeconomics17393Google Scholar
  23. Hirshleifer, Jack 2000The dark side of the force: economic foundations of conflict theoryCambridge University PressCambridgeGoogle Scholar
  24. Hölldobler, Bert, Edward, O. Wilson 1990The antsHarvard University PressCambridge MAGoogle Scholar
  25. Landa, Janet T. 1998Bioeconomics of schooling fishes: selfish fish, quasi-free riders, and other fishy talesEnvironmental Biology of Fishes53353364Google Scholar
  26. Landa, Janet T., Gordon, Tullock 2004Why ants do but honeybees do not construct satellite nestsJournal of Bioeconomics5151164Google Scholar
  27. Macom, Thomas E., Sanford, D. Porter 1996Comparison of polygyne and monogyne red imported fire ant (Hymenoptera: Formicidae) population densitiesAnnals of the Entomological Society of America89535543Google Scholar
  28. Makalowski, Wojciech 2000Genomic scrap yard: how genomes utilize all that junkGene2596167Google Scholar
  29. Mirsky, A.E., Ris, H. 1951The desoxyribonucleic acid content of animal cells and its evolutionary significanceJournal of General Physiology34451462Google Scholar
  30. Nei, Masatoshi 1969Gene duplication and nucleotide substitution in evolutionNature2214042Google Scholar
  31. Noë, Ronald, Jan, Hooff, Peter, Hammerstein 2001Economics in natureCambridge University PressCambridgeGoogle Scholar
  32. Ohno, Suzumu 1972So much “junk” DNA in our genomeSmith, H.H. eds. Brookhaven Symposia in Biology No. 23Gordon and BreachNew York366370Google Scholar
  33. Pianka, Eric R. 1988Evolutionary ecologyHarperCollins PublishersNew YorkGoogle Scholar
  34. Porter, Sanford D. 1988Impact of temperature on colony growth and developmental rates of the ant, Solenopsis invictaJournal of Insect Physiology3411271133Google Scholar
  35. Porter, Sanford D., Walter, R. Tschinkel 1993Fire ant thermal preferences: behavioral control of growth and metabolismBehavioral Ecology and Sociobiology32321329Google Scholar
  36. Ridley, Matt 1996The origin of virtue: human instincts and the evolution of cooperationPenguin BooksAucklandGoogle Scholar
  37. Sober, Elliot, David Sloan, Wilson 1998Unto others: the evolution and psychology of unselfish behaviorHarvard University PressCambridge, MAGoogle Scholar
  38. Stearns, Stephen C. 1992The evolution of life historiesOxford University PressNew YorkGoogle Scholar
  39. Stephens, David W., John, R. Krebs 1986Foraging theoryPrinceton University PressPrinceton, NJGoogle Scholar
  40. Schuler, Gregory D. M.S. Boguski, E.A. Stewart, L.D. Stein, G. Gyapay, K. Rice et al. (1996). A gene map of the human genome. Science 274:547–562.Google Scholar
  41. Tennant, Leanne E., Sanford, D. Porter 1991Comparison of diets of two fire ant species (Hymenoptera: Formicidae): solid and liquid componentsJournal of Entomological Science26450465Google Scholar
  42. Thomas, C.A. 1971The genetic organization of chromosomesAnnual Review of Genetics5237256Google Scholar
  43. Tschinkel, Walter R 1993The fire ant (Solenopsis invicta):Still unvanquishedMcKnight, B.N. eds. Biological pollution: the control and impact of invasive exotic speciesIndiana Academy of Science PressIndianapolis121136Google Scholar
  44. Wilson, Edward O. 1975SociobiologyHarvard University PressCambridgeGoogle Scholar
  45. Wong GaneKa-Shu, Douglas A.Passey, Huang Ying-song, Zhiyong Yang, Jun Yu. 2000. Is “junk” DNA mostly intron DNA? Genome Research 10:1672–1678.Google Scholar
  46. Zahavi, Amotz, Avishag, Zahavi. 1997The handicapped principle: a missing piece of Darwin’s puzzleOxford University PressLondonGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Environmental Science—BiologyUniversity of South FloridaSt. PetersburgUSA

Personalised recommendations