A Formalized General Theory of Syntax with Bindings: Extended Version

  • Lorenzo Gheri
  • Andrei PopescuEmail author


We present the formalization of a theory of syntax with bindings that has been developed and refined over the last decade to support several large formalization efforts. Terms are defined for an arbitrary number of constructors of varying numbers of inputs, quotiented to alpha-equivalence and sorted according to a binding signature. The theory contains a rich collection of properties of the standard operators on terms, including substitution, swapping and freshness—namely, there are lemmas showing how each of the operators interacts with all the others and with the syntactic constructors. The theory also features induction and recursion principles and support for semantic interpretation, all tailored for smooth interaction with the bindings and the standard operators.


Syntax with bindings Recursion and induction principles Isabelle/HOL 



  1. 1.
    Abel, A., Momigliano, A., Pientka, B.: POPLMark Reloaded. In: LFMTP (2017)Google Scholar
  2. 2.
    Allais, G., Atkey, R., Chapman, J., McBride, C., McKinna, J.: A type and scope safe universe of syntaxes with binding: their semantics and proofs. In: PACMPL 2(ICFP), pp. 90:1–90:30 (2018)Google Scholar
  3. 3.
    Allais, G., Chapman, J., McBride, C., McKinna, J.: Type-and-scope safe programs and their proofs. In: CPP, pp. 195–207 (2017)Google Scholar
  4. 4.
    Altenkirch, T., Ghani, N., Hancock, P., McBride, C., Morris, P.: Indexed containers. J. Funct. Program. 25, (2015)Google Scholar
  5. 5.
    Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized inductive types. In: CSL, pp. 453–468 (1999)Google Scholar
  6. 6.
    Aydemir, B., Weirich, S.: LNgen: Tool support for locally nameless representations. Tech. rep., UPenn (2010)Google Scholar
  7. 7.
    Aydemir, B.E., Bohannon, A., Weirich, S.: Nominal reasoning techniques in Coq (extended abstract). Electr. Notes Theor. Comput. Sci. 174(5), 69–77 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Aydemir, B.E., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering formal metatheory. In: POPL, pp. 3–15 (2008)Google Scholar
  9. 9.
    Baelde, D., Chaudhuri, K., Gacek, A., Miller, D., Nadathur, G., Tiu, A., Wang, Y.: Abella: a system for reasoning about relational specifications. J. Formalized Reason. 7(2), 1–89 (2014)MathSciNetGoogle Scholar
  10. 10.
    Barendregt, H.P.: The Lambda Calculus. North-Holland, Amsterdam (1984)zbMATHGoogle Scholar
  11. 11.
    Bauer, A., Gross, J., Lumsdaine, P.L., Shulman, M., Sozeau, M., Spitters, B.: The HoTT library: a formalization of homotopy type theory in Coq. In: CPP, pp. 164–172 (2017)Google Scholar
  12. 12.
    Bengtson, J., Parrow, J., Weber, T.: Psi-calculi in Isabelle. J. Autom. Reason. 56(1), 1–47 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Berghofer, S., Urban, C.: A head-to-head comparison of De Bruijn indices and names. Electr. Notes Theor. Comput. Sci. 174(5), 53–67 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Berghofer, S., Wenzel, M.: Inductive datatypes in HOL—Lessons learned in formal-logic engineering. In: TPHOLs, pp. 19–36 (1999)Google Scholar
  15. 15.
    Bird, R.S., Paterson, R.: De Bruijn notation as a nested datatype. J. Funct. Program 9(1), 77–91 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic types. In: TACAS, pp. 493–507 (2013)Google Scholar
  17. 17.
    Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic types. Log. Methods Comput. Sci.
  18. 18.
    Blanchette, J.C., Bouzy, A., Lochbihler, A., Popescu, A., Traytel, D.: Friends with benefits–implementing corecursion in foundational proof assistants. In: ESOP, pp. 111–140 (2017)Google Scholar
  19. 19.
    Blanchette, J.C., Gheri, L., Popescu, A., Traytel, D.: Bindings as bounded natural functors. In: PACMPL 3(POPL), pp. 22:1–22:34 (2019)Google Scholar
  20. 20.
    Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly modular (co)datatypes for Isabelle/HOL. In: ITP, pp. 93–110 (2014)Google Scholar
  21. 21.
    Blanchette, J.C., Meier, F., Popescu, A., Traytel, D.: Foundational nonuniform (co)datatypes for higher-order logic. In: LICS, pp. 1–12 (2017)Google Scholar
  22. 22.
    Blanchette, J.C., Popescu, A.: Mechanizing the metatheory of Sledgehammer. In: FroCoS, pp. 245–260 (2013)Google Scholar
  23. 23.
    Blanchette, J.C., Popescu, A., Traytel, D.: Cardinals in Isabelle/HOL. In: ITP, pp. 111–127 (2014)Google Scholar
  24. 24.
    Blanchette, J.C., Popescu, A., Traytel, D.: Unified classical logic completeness–a coinductive pearl. IJCAR 2014, 46–60 (2014)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Blanchette, J.C., Popescu, A., Traytel, D.: Foundational extensible corecursion: a proof assistant perspective. In: ICFP, pp. 192–204 (2015)Google Scholar
  26. 26.
    Blanchette, J.C., Popescu, A., Traytel, D.: Soundness and completeness proofs by coinductive methods. J. Autom. Reason. 58(1), 149–179 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    de Bruijn, N.: \(\lambda \)-calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church–Rosser theorem. Indag. Math 34(5), 381–392 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Charguéraud, A.: The locally nameless representation. J. Autom. Reason. 49(3), 363–408 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Chlipala, A.J.: Parametric higher-order abstract syntax for mechanized semantics. In: ICFP, pp. 143–156 (2008)Google Scholar
  30. 30.
    Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5(2), 56–68 (1940)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Copello, E., Szasz, N., Tasistro, Á.: Formalisation in constructive type theory of Barendregt’s variable convention for generic structures with binders. In: LFMTP, pp. 11–26 (2018)Google Scholar
  32. 32.
    Curien, P.L.: Categorical combinators. Inf. Control 69(1–3), 188–254 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Despeyroux, J., Felty, A.P., Hirschowitz, A.: Higher-order abstract syntax in Coq. In: TLCA, pp. 124–138 (1995)Google Scholar
  34. 34.
    van Doorn, F.: On the formalization of higher inductive types and synthetic homotopy theory. Ph.D. thesis, Carnegie Mellon University (2018)Google Scholar
  35. 35.
    Felty, A.P., Momigliano, A.: Hybrid - A definitional two-level approach to reasoning with higher-order abstract syntax. J. Autom. Reason. 48(1), 43–105 (2012)CrossRefzbMATHGoogle Scholar
  36. 36.
    Felty, A.P., Momigliano, A., Pientka, B.: An open challenge problem repository for systems supporting binders. In: LFMTP, pp. 18–32 (2015)Google Scholar
  37. 37.
    Felty, A.P., Pientka, B.: Reasoning with higher-order abstract syntax and contexts: a comparison. In: ITP, pp. 227–242 (2010)Google Scholar
  38. 38.
    Ferreira, F., Pientka, B.: Programs using syntax with first-class binders. In: ESOP, pp. 504–529 (2017)Google Scholar
  39. 39.
    Fiore, M., Gambino, N., Hyland, M., Winskel, G.: The cartesian closed bicategory of generalised species of structures. J. London Math. Soc. 1, 203–220 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding (extended abstract). In: LICS, pp. 193–202 (1999)Google Scholar
  41. 41.
    Gabbay, M., Pitts, A.M.: A new approach to abstract syntax involving binders. In: LICS, pp. 214–224 (1999)Google Scholar
  42. 42.
    Gabbay, M., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Asp. Comput. 13(3–5), 341–363 (2002)CrossRefzbMATHGoogle Scholar
  43. 43.
    Gabbay, M.J.: A general mathematics of names. Inf. Comput. 205(7), 982–1011 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Gambino, N., Hyland, M.: Wellfounded trees and dependent polynomial functors. In: TYPES, pp. 210–225 (2003)Google Scholar
  45. 45.
    Gheri, L., Popescu, A.: A case study in reasoning about syntax with bindings: the Church–Rosser and standardization theorems. Submitted to the Journal of Automated Reasoning.
  46. 46.
    Gheri, L., Popescu, A.: A general theory of syntax with bindings. Arch. Form. Proofs. (2019).
  47. 47.
    Gheri, L., Popescu, A.: A formalized general theory of syntax with bindings. In: ITP (2017)Google Scholar
  48. 48.
    Gordon, A.D., Melham, T.F.: Five axioms of alpha-conversion. In: TPHOLs, pp. 173–190 (1996)Google Scholar
  49. 49.
    Gunter, E.L., Osborn, C.J., Popescu, A.: Theory support for weak Higher Order Abstract Syntax in Isabelle/HOL. In: LFMTP, pp. 12–20 (2009)Google Scholar
  50. 50.
    Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. In: LICS, pp. 194–204 (1987)Google Scholar
  51. 51.
    Harrison, J.: Towards self-verification of HOL Light. In: IJCAR, pp. 177–191 (2006)Google Scholar
  52. 52.
    Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: ICALP, pp. 299–309 (1980)Google Scholar
  53. 53.
    Hinze, R.: Polytypic programming with ease. J. Funct. Logic Program. 2001(3) (2001)Google Scholar
  54. 54.
    Hirschowitz, A., Maggesi, M.: Modules over monads and initial semantics. Inf. Comput. 208(5), 545–564 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: LICS (1999)Google Scholar
  56. 56.
    Huet, G.P., Lang, B.: Proving and applying program transformations expressed with second-order patterns. Acta Inf. 11, 31–55 (1978). MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    IsaFoL (Isabelle Formalization of Logic) project (2018).
  58. 58.
    Joachimski, F.: Reduction properties of \(\varPi \text{IE}\)-systems. Ph.D. thesis, LMU München (2001)Google Scholar
  59. 59.
    Kaiser, J., Schäfer, S., Stark, K.: Binder aware recursion over well-scoped De Bruijn syntax. In: CPP, pp. 293–306 (2018)Google Scholar
  60. 60.
    Kammüller, F., Wenzel, M., Paulson, L.C.: Locales—a sectioning concept for Isabelle. In: TPHOLs, pp. 149–166 (1999)Google Scholar
  61. 61.
    Keisler, H.J.: Model Theory for Infinitary Logic. North-Holland, Amsterdam (1971)zbMATHGoogle Scholar
  62. 62.
    Keuchel, S., Jeuring, J.: Generic conversions of abstract syntax representations. In: Workshop on Generic Programming, pp. 57–68 (2012)Google Scholar
  63. 63.
    Keuchel, S., Weirich, S., Schrijvers, T.: Needle & Knot: Binder boilerplate tied up. In: ESOP, pp. 419–445 (2016)Google Scholar
  64. 64.
    Lee, G., Oliveira, B.C., Cho, S., Yi, K.: GMeta: a generic formal metatheory framework for first-order representations. In: ESOP, pp. 436–455 (2012)Google Scholar
  65. 65.
    Licata, D.R., Harper, R.: A universe of binding and computation. In: ICFP ’09, pp. 123–134 (2009)Google Scholar
  66. 66.
    Lochbihler, A.: Java and the Java memory model—a unified, machine-checked formalisation. In: H. Seidl (ed.) ESOP 2012, LNCS, vol. 7211, pp. 497–517. Springer, Berlin (2012)Google Scholar
  67. 67.
    Luttik, B.: Choice quantification in process algebra. Ph.D. thesis, University of Amsterdam (2002)Google Scholar
  68. 68.
    Miller, D., Tiu, A.: A proof theory for generic judgments. ACM Trans. Comput. Logic 6(4), 749–783 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Milner, R.: Communication and Concurrency. Prentice Hall, New York (1989)zbMATHGoogle Scholar
  70. 70.
    Milner, R.: Communicating and Mobile Systems: The \(\pi \)-calculus. Cambridge University Press, Cambridge (2001)Google Scholar
  71. 71.
    Nipkow, T., Klein, G.: Concrete Semantics: With Isabelle/HOL. Springer, Berlin (2014)CrossRefzbMATHGoogle Scholar
  72. 72.
    Nipkow, T., von Oheimb, D.: \(\text{ Java }{}_{{\rm light}}\) is type-safe - definitely. In: POPL, pp. 161–170 (1998)Google Scholar
  73. 73.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  74. 74.
    Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s Type Theory: An Introduction. Oxford University Press, Oxford (1990)zbMATHGoogle Scholar
  75. 75.
    Norrish, M.: Mechanising lambda-calculus using a classical first order theory of terms with permutations. Higher-Order Symb. Comput. 19(2–3), 169–195 (2006)CrossRefzbMATHGoogle Scholar
  76. 76.
    Norrish, M., Vestergaard, R.: Proof pearl: De Bruijn terms really do work. In: TPHOLs, pp. 207–222 (2007)Google Scholar
  77. 77.
    Paulson, L.C.: The foundation of a generic theorem prover. J. Autom. Reason. 5(3), 363–397 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Pfenning, F.: Computation and Deduction. Cambridge University Press, Cambridge (2001)Google Scholar
  79. 79.
    Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: PLDI, pp. 199–208 (1988)Google Scholar
  80. 80.
    Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: PLDI, pp. 199–208 (1988)Google Scholar
  81. 81.
    Pfenning, F., Schürmann, C.: System description: Twelf–A meta-logical framework for deductive systems. In: CADE, pp. 202–206 (1999)Google Scholar
  82. 82.
    Pientka, B.: Beluga: Programming with dependent types, contextual data, and contexts. In: FLOPS, pp. 1–12 (2010)Google Scholar
  83. 83.
    Pitts, A.M.: Nominal logic: A first order theory of names and binding. In: TACS, pp. 219–242 (2001)Google Scholar
  84. 84.
    Pitts, A.M.: Alpha-structural recursion and induction. J. ACM 53, 3 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci. 1(2), 125–159 (1975)CrossRefzbMATHGoogle Scholar
  86. 86.
    Pollack, R.: Closure under alpha-conversion. In: TYPES, pp. 313–332 (1993)Google Scholar
  87. 87.
    Pollack, R., Sato, M., Ricciotti, W.: A canonical locally named representation of binding. J. Autom. Reason. 49(2), 185–207 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  88. 88.
    Polonowski, E.: Automatically generated infrastructure for de Bruijn syntaxes. In: ITP, pp. 402–417 (2013)Google Scholar
  89. 89.
    Popescu, A.: Contributions to the theory of syntax with bindings and to process algebra (2010). PhD thesis, Univ. of IllinoisGoogle Scholar
  90. 90.
    Popescu, A., Gunter, E.L.: Incremental pattern-based coinduction for process algebra and its Isabelle formalization. In: FoSSaCS (2010)Google Scholar
  91. 91.
    Popescu, A., Gunter, E.L.: Recursion principles for syntax with bindings and substitution. In: ICFP, pp. 346–358 (2011)Google Scholar
  92. 92.
    Popescu, A., Gunter, E.L., Osborn, C.J.: Strong normalization of System F by HOAS on top of FOAS. In: LICS, pp. 31–40 (2010)Google Scholar
  93. 93.
    Popescu, A., Hölzl, J., Nipkow, T.: Proving concurrent noninterference. In: CPP, pp. 109–125 (2012)Google Scholar
  94. 94.
    Popescu, A., Hölzl, J., Nipkow, T.: Formalizing probabilistic noninterference. In: CPP, pp. 259–275 (2013)Google Scholar
  95. 95.
    Popescu, A., Roşu, G.: Term-generic logic. Theor. Comput. Sci. 577, 1–24 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  96. 96.
    Poswolsky, A., Schürmann, C.: System description: Delphin–a functional programming language for deductive systems. Electr. Notes Theor. Comput. Sci. 228, 113–120 (2009)CrossRefGoogle Scholar
  97. 97.
    Rossberg, A., Russo, C.V., Dreyer, D.: F-ing modules. In: TLDI, pp. 89–102 (2010)Google Scholar
  98. 98.
    Schäfer, S., Tebbi, T., Smolka, G.: Autosubst: reasoning with De Bruijn terms and parallel substitutions. In: ITP (2015)Google Scholar
  99. 99.
    Schropp, A., Popescu, A.: Nonfree datatypes in Isabelle/HOL–animating a many-sorted metatheory. In: CPP, pp. 114–130 (2013)Google Scholar
  100. 100.
    Schurmann, C., Despeyroux, J., Pfenning, F.: Primitive recursion for higher-order abstract syntax. Theor. Comput. Sci. 266(1–2), 1–57 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  101. 101.
    Sewell, P., Nardelli, F.Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnisa, R.: Ott: effective tool support for the working semanticist. J. Funct. Program. 20(1), 71–122 (2010)CrossRefzbMATHGoogle Scholar
  102. 102.
    Stark, K., Schäfer, S., Kaiser, J.: Autosubst 2: reasoning with multi-sorted De Bruijn terms and vector substitutions. In: CPP (2019). To appearGoogle Scholar
  103. 103.
    Stoughton, A.: Substitution revisited. Theor. Comput. Sci. 59, 317–325 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  104. 104.
    Sun, Y.: An algebraic generalization of frege structures-binding algebras. Theor. Comput. Sci. 211(1–2), 189–232 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  105. 105.
    Takahashi, M.: Parallel reductions in lambda-calculus. Inf. Comput. 118(1), 120–127 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  106. 106.
    Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional (co)datatypes for higher-order logic: category theory applied to theorem proving. In: LICS, pp. 596–605 (2012)Google Scholar
  107. 107.
    The POPLmark challenge (2009).
  108. 108.
    Urban, C.: Nominal techniques in Isabelle/HOL. J. Autom. Reason. 40(4), 327–356 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  109. 109.
    Urban, C., Berghofer, S.: A recursion combinator for nominal datatypes implemented in Isabelle/HOL. In: IJCAR, pp. 498–512 (2006)Google Scholar
  110. 110.
    Urban, C., Berghofer, S., Norrish, M.: Barendregt’s variable convention in rule inductions. In: CADE, pp. 35–50 (2007)Google Scholar
  111. 111.
    Urban, C., Kaliszyk, C.: General bindings and alpha-equivalence in Nominal Isabelle. In: ESOP, pp. 480–500 (2011)Google Scholar
  112. 112.
    Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: CADE, pp. 38–53 (2005)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceMiddlesex UniversityLondonUK

Personalised recommendations