Skip to main content
Log in

Mechanized Metatheory Revisited

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

When proof assistants and theorem provers implement the metatheory of logical systems, they must deal with a range of syntactic expressions (e.g., types, formulas, and proofs) that involve variable bindings. Since most mature proof assistants do not have built-in methods to treat bindings, they have been extended with various packages and libraries that allow them to encode such syntax using, for example, de Bruijn numerals. We put forward the argument that bindings are such an intimate aspect of the structure of expressions that they should be accounted for directly in the underlying programming language support for proof assistants and not via packages and libraries. We present an approach to designing programming languages and proof assistants that directly supports bindings in syntax. The roots of this approach can be found in the mobility of binders between term-level bindings, formula-level bindings (quantifiers), and proof-level bindings (eigenvariables). In particular, the combination of Church’s approach to terms and formulas (found in his Simple Theory of Types) and Gentzen’s approach to proofs (found in his sequent calculus) yields a framework for the interaction of bindings with a full range of logical connectives and quantifiers. We will also illustrate how that framework provides a direct and semantically clean treatment of computation and reasoning with syntax containing bindings. Some implemented systems, which support this intimate and built-in treatment of bindings, will be briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The reader who is not familiar with the term HOAS can safely skip to the last paragraph of this section.

References

  1. The Abella prover (2012). http://abella-prover.org/

  2. Abramsky, S.: The lazy lambda calculus. In: Turner, D.A. (ed.) Research Topics in Functional Programming, pp. 65–116. Addison-Welsey, Reading, MA (1990)

    Google Scholar 

  3. Accattoli, B.: Proof pearl: Abella formalization of lambda calculus cube property. In: Hawblitzel, C., Miller, D. (eds.) Second International Conference on Certified Programs and Proofs, volume 7679 of LNCS, pp. 173–187. Springer (2012)

  4. Ahn, K.Y., Horne, R., Tiu, A.: A Characterisation of Open Bisimilarity using an Intuitionistic Modal Logic. In: Meyer, R., Nestmann, U. (eds.) 28th International Conference on Concurrency Theory (CONCUR 2017), volume 85 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 7:1–7:17, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2017)

  5. Altenkirch, T.: A formalization of the strong normalization proof for system F in LEGO. In: Typed Lambda Calculi and Applications (TLCA), volume 664, pp. 13–28 (1993)

  6. Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36, 414–432 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andrews, P.B.: Provability in elementary type theory. Zeitschrift fur Mathematische Logic und Grundlagen der Mathematik 20, 411–418 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd edn. Kluwer Academic Publishers, Dordrecht (2002)

    Book  MATH  Google Scholar 

  9. Appel, A.W., Felty, A.P.: Polymorphic lemmas and definitions in \(\lambda \)Prolog and Twelf. Theory Pract. Log. Program. 4(1–2), 1–39 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering formal metatheory. In: 35th ACM Symposium on Principles of Programming Languages, pp. 3–15. ACM (2008)

  11. Aydemir, B., Zdancewic, S.A., Weirich, S.: Abstracting syntax. Technical Report MS-CIS-09-06, University of Pennsylvania (2009)

  12. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P., Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory for the masses: The POPLmark challenge. In: Theorem Proving in Higher Order Logics: 18th International Conference, number 3603 in LNCS, pp. 50–65. Springer (2005)

  13. Baelde, D.: On the expressivity of minimal generic quantification. In: Abel, A., Urban, C. (eds.) International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP 2008), number 228 in ENTCS, pp. 3–19 (2008)

  14. Baelde, D.: Least and greatest fixed points in linear logic. ACM Trans. Comput. Log. 13(1), 2 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Baelde, D., Chaudhuri, K., Gacek, A., Miller, D., Nadathur, G., Tiu, A., Wang, Y.: Abella: a system for reasoning about relational specifications. J. Formaliz. Reason. 7(2), 1–89 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Baelde, D., Gacek, A., Miller, D., Nadathur, G., Tiu, A.: The Bedwyr system for model checking over syntactic expressions. In: Pfenning, F. (ed.) 21th Conf. on Automated Deduction (CADE), number 4603 in LNAI, pp. 391–397, New York. Springer (2007)

  17. Baelde, D., Miller, D.: Least and greatest fixed points in linear logic. In: Dershowitz, N., Voronkov, A. (eds.) International Conference on Logic for Programming and Automated Reasoning (LPAR), volume 4790 of LNCS, pp. 92–106 (2007)

  18. Barendregt, H.P.: Introduction to generalized type systems. J. Funct. Program. 1(2), 125–154 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J. (ed.) Computational Logic, volume 9 of Handbook of the History of Logic, pp. 215–254. North Holland (2014)

  20. Berger, U., Berghofer, S., Letouzey, P., Schwichtenberg, H.: Program extraction from normalization proofs. Stud. Log. 82(1), 25–49 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bertot, Y., Castéran, P.: Interactive theorem proving and program development. Coq’Art: the calculus of inductive constructions. Texts in theoretical computer science. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  22. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pp. 457–468. ACM (2013)

  23. Borgstrom, J., Gutkovas, R., Rodhe, I., Victor, B.: The psi-calculi workbench: a generic tool for applied process calculi. ACM Trans. Embed. Comput. Syst. 14(1), 9:1–9:25 (2015)

    Article  Google Scholar 

  24. Borras, P., Clément, D., Despeyroux, Th., Incerpi, J., Kahn, G., Lang, B., Pascual, V.: Centaur: the system. In: Third Annual Symposium on Software Development Environments (SDE3), pp. 14–24, Boston (1988)

  25. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda—a functional language with dependent types. In: TPHOLs, volume 5674, pp. 73–78. Springer (2009)

  26. Charguéraud, A.: The locally nameless representation. J. Autom. Reason. 49(3), 1–46 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Chaudhuri, K., Cimini, M., Miller, D.: A lightweight formalization of the metatheory of bisimulation-up-to. In: Leroy, X., Tiu, A. (eds.) Proceedings of the 4th ACM-SIGPLAN Conference on Certified Programs and Proofs, pp. 157–166, Mumbai, India, (2015). ACM

  28. Cheney, J., Urban, C.: Alpha-Prolog: a logic programming language with names, binding, and alpha-equivalence. In: Demoen, B., Lifschitz, V. (eds.) Logic Programming, 20th International Conference, volume 3132 of LNCS, pp. 269–283. Springer (2004)

  29. Chlipala, A.: Parametric higher-order abstract syntax for mechanized semantics. In: Hook, J., Thiemann, P. (eds.) Proceeding of the 13th ACM SIGPLAN International Conference on Functional Programming, ICFP 2008, Victoria, BC, Canada, September 20-28, 2008, pp. 143–156. ACM (2008)

  30. Chlipala, A.: Certified Programming with Dependent Types—A Pragmatic Introduction to the Coq Proof Assistant. MIT Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  31. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: a semantics-based tool for the verification of concurrent systems. ACM Trans. Program. Lang. Syst. (TOPLAS) 15(1), 36–72 (1993)

    Article  Google Scholar 

  33. Clément, D., Despeyroux, J., Despeyroux, T., Hascoët, L., Kahn, G.: Natural semantics on the computer. Research Report 416, INRIA, Rocquencourt, France (1985)

  34. Constable, R.L.: Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall, Upper Saddle River (1986)

    Google Scholar 

  35. Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2/3), 95–120 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with an application to the Church–Rosser theorem. Indag. Math. 34(5), 381–392 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  37. Despeyroux, J., Felty, A., Hirschowitz, A.: Higher-order abstract syntax in Coq. In: Second International Conference on Typed Lambda Calculi and Applications, pp. 124–138 (1995)

  38. Donzeau-Gouge, V., Huet, G., Kahn, G., Lang, B.: Programming environments based on structured editors: The MENTOR experience. Technical report, Inria (1980)

  39. Dunchev, C., Coen, C.S., Tassi, E.: Implementing HOL in an higher order logic programming language. In: Dowek, G., Licata, D. R., Alves, S. (eds.) Proceedings of the Eleventh Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, LFMTP 2016, Porto, Portugal, June 23, 2016, pp. 4:1–4:10. ACM (2016)

  40. Dunchev, C., Guidi, F., Coen, C. S., Tassi, E.: ELPI: fast, embeddable, \(\lambda \)Prolog interpreter. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning—20th International Conference, LPAR-20 2015, Suva, Fiji, November 24–28, 2015, Proceedings, volume 9450 of LNCS, pp. 460–468. Springer (2015)

  41. Eriksson, L.-H.: Pi: an interactive derivation editor for the calculus of partial inductive definitions. In: Bundy, A. (ed.) Proceedings of the Twelfth International Conference on Automated Deduction, volume 814 of LNAI, pp. 821–825. Springer (1994)

  42. Felty, A., Miller, D.: Specifying theorem provers in a higher-order logic programming language. In: Ninth International Conference on Automated Deduction, number 310 in LNCS, pp. 61–80, Argonne, IL. Springer (1988)

  43. Felty, A., Miller, D.: Encoding a dependent-type \(\lambda \)-calculus in a logic programming language. In: Stickel, M. (ed.) Proceedings of the 1990 Conference on Automated Deduction, volume 449 of LNAI, pp. 221–235. Springer (1990)

  44. Felty, A., Momigliano, A.: Hybrid: a definitional two-level approach to reasoning with higher-order abstract syntax. J. Autom. Reason. 48, 43–105 (2012)

    Article  MATH  Google Scholar 

  45. Felty, A. P., Momigliano, A., Pientka, B.: The next 700 challenge problems for reasoning with higher-order abstract syntax representations: Part 1–A common infrastructure for benchmarks. Technical report, Arxiv (2015)

  46. Felty, A.P., Momigliano, A., Pientka, B.: The next 700 challenge problems for reasoning with higher-order abstract syntax representations: Part 2-A survey. J. Autom. Reason. 55(4), 307–372 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Felty, A.P., Momigliano, A., Pientka, B.: Benchmarks for reasoning with syntax trees containing binders and contexts of assumptions. Math. Struct. Comput. Sci. 28, 1507–1540 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Fiore, M.P., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding. In: 14th Symposium on Logic in Computer Science, pp. 193–202. IEEE Computer Society Press (1999)

  49. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax involving binders. In: 14th Symposium on Logic in Computer Science, pp. 214–224. IEEE Computer Society Press (1999)

  50. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Aspects of Computing 13, 341–363 (2001)

    Article  MATH  Google Scholar 

  51. Gacek, Andrew: The Abella interactive theorem prover (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Fourth International Joint Conference on Automated Reasoning, volume 5195 of LNCS, pp. 154–161. Springer (2008)

  52. Gacek, A.: A Framework for Specifying, Prototyping, and Reasoning about Computational Systems. Ph.D. thesis, University of Minnesota (2009)

  53. Gacek, A.: Relating nominal and higher-order abstract syntax specifications. In: Proceedings of the 2010 Symposium on Principles and Practice of Declarative Programming, pp. 177–186. ACM (2010)

  54. Gacek, A., Miller, D., Nadathur, G.: Combining generic judgments with recursive definitions. In: Pfenning, F. (ed.) 23th Symposium on Logic in Computer Science, pp. 33–44. IEEE Computer Society Press (2008)

  55. Gacek, A., Miller, D., Nadathur, G.: Nominal abstraction. Inf. Comput. 209(1), 48–73 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Gacek, A., Miller, D., Nadathur, G.: A two-level logic approach to reasoning about computations. J. Autom. Reason. 49(2), 241–273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland, Amsterdam (1935)

    Google Scholar 

  58. Gentzen, Gerhard: New version of the consistency proof for elementary number theory. In: Szabo, M.E. (ed.) Collected Papers of Gerhard Gentzen, pp. 252–286. North-Holland, Amsterdam, 1938. Originally published (1938)

  59. Gérard, U., Miller, D.: Separating functional computation from relations. In: Goranko, V., Dam, M. (eds.) 26th EACSL Annual Conference on Computer Science Logic (CSL 2017), volume 82 of LIPIcs, pp. 23:1–23:17 (2017)

  60. Gérard, U., Miller, D.: Functional programming with \(\lambda \)-tree syntax: a progress report. In: 13th international Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, Oxford, United Kingdom (2018)

  61. Girard, J.-Y.: Une extension de l’interpretation de Gödel à l’analyse, et son application à l’élimination des coupures dans l’analyse et la théorie des types. In: Fenstad, J.E. (ed.) 2nd Scandinavian Logic Symposium, pp. 63–92. North-Holland, Amsterdam (1971)

  62. Girard, J.-Y.: A fixpoint theorem in linear logic. An email posting to the mailing list linear@cs.stanford.edu, (1992)

  63. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte der Mathematischen Physik 38, 173–198 (1931). English Version in [167]

    Article  MATH  Google Scholar 

  64. Gordon, M.J.C., Melham, T.F.: Introduction to HOL—A theorem proving environment for higher order logic. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  65. Gordon, M.J., Milner, A.J., Wadsworth, P.: Edinburgh LCF: A Mechanised Logic of Computation, volume 78 of LNCS. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  66. Gordon, M.: From LCF to HOL: a short history. In: Plotkin, G.D., Stirling, C., Tofte, M. (eds.) Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 169–186. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  67. Hannan, J.: Extended natural semantics. J. Funct. Program. 3(2), 123–152 (1993)

    Article  MathSciNet  Google Scholar 

  68. Hannan, J., Miller, D.: From operational semantics to abstract machines. Math. Struct. Comput. Sci. 2(4), 415–459 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  69. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. ACM 40(1), 143–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  70. Harrison, J.: HOL light: an overview. In: International Conference on Theorem Proving in Higher Order Logics, pp. 60–66. Springer (2009)

  71. Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: 14th Symposium on Logic in Computer Science, pp. 204–213. IEEE Computer Society Press (1999)

  72. Honsell, F., Miculan, M., Scagnetto, I.: \(\pi \)-calculus in (co)inductive type theories. Theor. Comput. Sci. 2(253), 239–285 (2001)

    Article  MATH  Google Scholar 

  73. Howe, D.J.: Proving congruence of bisimulation in functional programming languages. Inf. Comput. 124(2), 103–112 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  74. Huet, G.: The undecidability of unification in third order logic. Inf. Control 22, 257–267 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  75. Huet, G.: A unification algorithm for typed \(\lambda \)-calculus. Theor. Comput. Sci. 1, 27–57 (1975)

    Article  MATH  Google Scholar 

  76. Huet, G., Lang, B.: Proving and applying program transformations expressed with second-order patterns. Acta Inf. 11, 31–55 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  77. Kahn, G.: Natural semantics. In: Brandenburg, F.-J., Vidal-Naquet, G., Wirsing, M. (eds.) Proceedings of the Symposium on Theoretical Aspects of Computer Science, volume 247 of LNCS, pp. 22–39. Springer (1987)

  78. Kaiser, J., Pientka, B., Smolka, G.: Relating system F and \(\lambda \)2: A case study in Coq, Abella and Beluga. In: Miller, D. (ed.) FSCD 2017—1st International Conference on Formal Structures for Computation and Deduction, pp. 21:1–21:19, Oxford, UK (2017)

  79. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal verification of an OS kernel. In: Proceedings of the 22nd Symposium on Operating Systems Principles (22nd SOSP’09), Operating Systems Review (OSR), pp. 207–220, Big Sky, MT. ACM SIGOPS (2009)

  80. Kohlenbach, U., Oliva, P.: Proof mining: a systematic way of analysing proofs in mathematics. Proc. Steklov Inst. Math. 242, 136–164 (2003)

    MATH  Google Scholar 

  81. Lee, P., Pfenning, F., Rollins, G., Scherlis, W.: The Ergo Support System: An integrated set of tools for prototyping integrated environments. In: Henderson, P. (ed.) Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development Environments, pp. 25–34. ACM Press (1988)

  82. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)

    Article  Google Scholar 

  83. Liang, C., Nadathur, G., Qi, X.: Choices in representing and reduction strategies for lambda terms in intensional contexts. J. Autom. Reason. 33, 89–132 (2005)

    Article  MATH  Google Scholar 

  84. MacKenzie, D.: Mechanizing Proof. MIT Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  85. Maksimović, P., Schmitt, A.: HOCore in coq. In: Interactive Theorem Proving—6th International Conference, ITP 2015, Nanjing, China, August 24–27, 2015, Proceedings, number 9236 in LNCS, pp. 278–293. Springer (2015)

  86. Martin-Löf, Per: Intuitionistic Type Theory. Studies in Proof Theory Lecture Notes. Bibliopolis, Napoli (1984)

  87. McDowell, Raymond: Reasoning in a Logic with Definitions and Induction. Ph.D. thesis, University of Pennsylvania (1997)

  88. McDowell, R., Miller, D.: A logic for reasoning with higher-order abstract syntax. In: Glynn, W. (ed.) 12th Symposium on Logic in Computer Science, pp. 434–445, Warsaw, Poland. IEEE Computer Society Press (1997)

  89. McDowell, R., Miller, D.: Cut-elimination for a logic with definitions and induction. Theor. Comput. Sci. 232, 91–119 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  90. McDowell, R., Miller, D.: Reasoning with higher-order abstract syntax in a logical framework. ACM Trans. Comput. Log. 3(1), 80–136 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  91. Miller, D.: A compact representation of proofs. Stud. Log. 46(4), 347–370 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  92. Miller, D.: A logic programming language with lambda-abstraction, function variables, and simple unification. J. Logic Comput. 1(4), 497–536 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  93. Miller, D.: Abstract syntax and logic programming. In: Logic Programming: Proceedings of the First Russian Conference on Logic Programming, 14-18 September 1990, number 592 in LNAI, pp. 322–337. Springer (1992)

  94. Miller, D.: Unification under a mixed prefix. J. Symb. Comput. 14(4), 321–358 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  95. Miller, D.: Bindings, mobility of bindings, and the \(\nabla \)-quantifier. In: Marcinkowski, J., Tarlecki, A. (eds.) 18th International Conference on Computer Science Logic (CSL) 2004, volume 3210 of LNCS, pp. 24 (2004)

  96. Miller, D.: Finding unity in computational logic. In: Proceedings of the 2010 ACM-BCS Visions of Computer Science Conference, ACM-BCS ’10, pp. 3:1–3:13. British Computer Society (2010)

  97. Miller, D., Nadathur, G.: Higher-order logic programming. In: Shapiro, E. (ed.) Proceedings of the Third International Logic Programming Conference, pp. 448–462, London (1986)

  98. Miller, D., Nadathur, G.: A logic programming approach to manipulating formulas and programs. In: Haridi, S. (ed.) IEEE Symposium on Logic Programming, pp. 379–388, San Francisco (1987)

  99. Miller, D., Nadathur, G.: Programming with Higher-Order Logic. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  100. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Ann. Pure Appl. Log. 51(1–2), 125–157 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  101. Miller, D., Nadathur, G., Scedrov, A.: Hereditary Harrop formulas and uniform proof systems. In: Gries, D. (ed.) 2nd Symposium on Logic in Computer Science, pp. 98–105, Ithaca, NY (1987)

  102. Miller, D., Palamidessi, C.: Foundational aspects of syntax. ACM Computing Surveys (1999)

  103. Miller, D., Tiu, A.: A proof theory for generic judgments: An extended abstract. In: Kolaitis, P.: (ed.) 18th Symposium on Logic in Computer Science, pp. 118–127. IEEE (2003)

  104. Miller, D., Tiu, A.: A proof theory for generic judgments. ACM Trans. Comput. Log. 6(4), 749–783 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  105. Miller, D. A., Cohen, E. L., Andrews, P. B.: A look at TPS. In: Loveland, D. W. (ed.) Sixth Conference on Automated Deduction, volume 138 of LNCS, pp. 50–69, New York, Springer (1982)

  106. Milner, R.: Communication and Concurrency. Prentice-Hall International, Upper Saddle River (1989)

    MATH  Google Scholar 

  107. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Part I. Inf. Comput. 100(1), 1–40 (1992)

    Article  MATH  Google Scholar 

  108. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Part II. Inf. Comput. 100(1), 41–77 (1992)

    Article  MATH  Google Scholar 

  109. Milner, R., Parrow, J., Walker, D.: Modal logics for mobile processes. Theor. Comput. Sci. 114(1), 149–171 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  110. Milner, R., Tofte, M.: Commentary on Standard ML. The MIT Press, Cambridge (1991)

    Google Scholar 

  111. Mitchell, J.C., Moggi, E.: Kripke-style models for typed lambda calculus. Ann. Pure Appl. Log. 51(1–2), 99–124 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  112. Momigliano, A., Pientka, B., Thibodeau, D.: A case-study in programming coinductive proofs: Howe’s method. Submitted (2017)

  113. Moore, J.S.: A mechanically verified language implementation. J. Autom. Reason. 5(4), 461–492 (1989)

    Google Scholar 

  114. Nadathur, G., Miller, D.: An overview of \(\lambda \) prolog. In: Fifth International Logic Programming Conference, pp. 810–827, Seattle. MIT Press (1988)

  115. Nadathur, G., Mitchell, D. J.: System description: Teyjus—a compiler and abstract machine based implementation of \(\lambda \)Prolog. In: Ganzinger, H. (ed.) 16th Conference on Automated Deduction (CADE), number 1632 in LNAI, pp. 287–291, Trento. Springer (1999)

  116. Nadathur, G., Wilson, D.S.: A notation for lambda terms: a generalization of environments. Theor. Comput. Sci. 198(1–2), 49–98 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  117. Nanevski, A., Pfenning, F., Pientka, B.: Contextual model type theory. ACM Trans. Comput. Log. 9(3), 1–49 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  118. Naumowicz, A., Korniłowicz, A.: A brief overview of Mizar. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in Higher Order Logics, volume 5674 of LNCS, pp. 67–72 (2009)

  119. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order Logic. Number 2283 in LNCS. Springer, Berlin (2002)

    MATH  Google Scholar 

  120. Nordstrom, B., Petersson, K., Smith, J.M.: Programming in Martin–Löf’s Type Theory: An Introduction. International Series of Monographs on Computer Science. Clarendon, Oxford (1990)

    MATH  Google Scholar 

  121. Paulson, L.C.: Natural deduction as higher-order resolution. J. Log. Program. 3, 237–258 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  122. Paulson, L.C.: Isabelle: A Generic Theorem Prover. Number 828 in LNCS. Springer Verlag, Berlin (1994)

    Book  Google Scholar 

  123. Paulson, L.C.: A generic tableau prover and its integration with isabelle. J. UCS 5(3), 73–87 (1999)

    MathSciNet  MATH  Google Scholar 

  124. Perlis, A.J.: Epigrams on programming. ACM SIGPLAN Notices, pp. 7–13 (1982)

  125. Pfenning, F.: Elf: a language for logic definition and verified metaprogramming. In: 4th Symposium on Logic in Computer Science, pp. 313–321, Monterey, CA (1989)

  126. Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: Proceedings of the ACM-SIGPLAN Conference on Programming Language Design and Implementation, pp. 199–208. ACM Press (1988)

  127. Pfenning, F., Rohwedder, E.: Implementing the meta-theory of deductive systems. In: Proceedings of the 1992 Conference on Automated Deduction, number 607 in LNCS, pp. 537–551. Springer (1992)

  128. Pfenning, F., Schürmann, C.: System description: Twelf—A meta-logical framework for deductive systems. In: Ganzinger, H. (ed.) 16th Conference on Automated Deduction (CADE), number 1632 in LNAI, pp. 202–206, Trento. Springer (1999)

  129. Pientka, B., Dunfield, J.: Beluga: a framework for programming and reasoning with deductive systems (system description). In: Giesl, J., Hähnle, R. (eds.) Fifth International Joint Conference on Automated Reasoning, number 6173 in LNCS, pp. 15–21 (2010)

  130. Pierce, B.C., de Amorim, A.A., Casinghino, C., Gaboardi, M., Greenberg, M., Hricu, C., Sjöberg, V., Tolmach, A., Yorgey, B.: Programming Language Foundations, volume 2 of Software Foundations. Online (2010)

  131. Pitts, A.M., Gabbay, M.J.: A Metalanguage for Programming with Bound Names Modulo Renaming. In: Backhouse, R., Oliveira, J.N. (eds.) Mathematics of Program Construction. 5th International Conference, MPC2000, Ponte de Lima, Portugal, July 2000. Proceedings, volume 1837 of LNCS, pp. 230–255. Springer, Heidelberg (2000)

  132. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput. 186(2), 165–193 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  133. Pitts, A.M.: Alpha-structural recursion and induction. J. ACM 53(3), 459–506 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  134. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebraic Program. 60–61, 17–139 (2004)

    MathSciNet  MATH  Google Scholar 

  135. The POPLmark Challenge webpage. http://www.seas.upenn.edu/~plclub/poplmark/ (2015)

  136. Pottier, F.: Static name control for FreshML. In: 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007), pp. 356–365. IEEE (2007)

  137. Pous, D.: Weak bisimulation upto elaboration. In: Baier, C., Hermanns, H. (eds.) CONCUR, volume 4137 of LNCS, pp. 390–405. Springer (2006)

  138. Pous, Damien: Complete lattices and upto techniques. In: Shao, Zhong (ed.) APLAS, volume 4807 of LNCS, pp. 351–366, Singapore. Springer (November 2007)

  139. Pous, D., Sangiorgi, D.: Enhancements of the bisimulation proof method. In: Sangiorgi, D., Rutten, J. (eds.) Advanced Topics in Bisimulation and Coinduction, pp. 233–289. Cambridge University Press, Cambridge (2011)

    Chapter  MATH  Google Scholar 

  140. Prawitz, D.: Hauptsatz for higher order logic. J. Symb. Log. 33, 452–457 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  141. Qi, X., Gacek, A., Steven, H., Nadathur, G., Snow, Z.: The Teyjus system—version 2 (2015). http://teyjus.cs.umn.edu/

  142. Röckl, C., Hirschkoff, D., Berghofer, S.: Higher-order abstract syntax with induction in Isabelle/HOL: Formalizing the pi-calculus and mechanizing the theory of contexts. In: Honsell, F., Miculan, M. (eds.) Proceedings of the FOSSACS’01, volume 2030 of LNCS, pp. 364–378. Springer (2001)

  143. Sangiorgi, D.: \(\pi \)-calculus, internal mobility and agent-passing calculi. Theor. Comput. Sci. 167(2), 235–274 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  144. Sangiorgi, D., Walker, D.: \(\pi \)-Calculus: A Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  145. Schroeder-Heister, P.: Rules of definitional reflection. In: Vardi, M. (ed.) 8th Symposium on Logic in Computer Science, pp. 222–232. IEEE Computer Society Press, IEEE (1993)

  146. Schürmann, C., Pfenning, F.: Automated theorem proving in a simple meta-logic for LF. In: Kirchner, C., Kirchner, H. (eds.) 15th Conference on Automated Deduction (CADE), volume 1421 of Lecture Notes in Computer Science, pp. 286–300. Springer (1998)

  147. Schwichtenberg, H.: MINLOG reference manual. LMU München, Mathematisches Institut, Theresienstraße, 39 (2011)

  148. Scott, D.: Outline of a mathematical theory of computation. In: Proceedings, Fourth Annual Princeton Conference on Information Sciences and Systems, pp. 169–176. Princeton University, 1970. Also, Programming Research Group Technical Monograph PRG–2, Oxford University (1970)

  149. Selinger, P.: The lambda calculus is algebraic. J. Funct. Program. 12(6), 549–566 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  150. Sewell, P., Nardelli, F.Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strniša, R.: Ott: effective tool support for the working semanticist. J. Funct. Program. 20(01), 71–122 (2010)

    Article  MATH  Google Scholar 

  151. Snow, Z., Baelde, D., Nadathur, G.: A meta-programming approach to realizing dependently typed logic programming. In: Kutsia, T., Schreiner, W., Fernández, M. (eds.) ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP), pp. 187–198 (2010)

  152. Southern, M., Chaudhuri, K.: A two-level logic approach to reasoning about typed specification languages. In: Raman, V., Suresh, S.P. (eds.) 34th International Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), volume 29 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 557–569, New Delhi, India, December 2014. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2014)

  153. Southern, M., Nadathur, G.: A \(\lambda \)Prolog based animation of Twelf specifications. The International Colloquium on Implementation of Constraint and Logic Programming Systems (CICLOPS) (2014)

  154. Stump, A.: Verified Functional Programming in Agda. Morgan & Claypool, San Rafael (2016)

    Book  Google Scholar 

  155. Takahashi, M.: A proof of cut-elimination theorem in simple type theory. J. Math. Soc. Jpn. 19, 399–410 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  156. Tiu, A.: A Logical Framework for Reasoning about Logical Specifications. Ph.D. thesis, Pennsylvania State University (2004)

  157. Tiu, A.: Model checking for \(\pi \)-calculus using proof search. In: Abadi, M., de Alfaro, L. (eds.) Proceedings of CONCUR’05, volume 3653 of LNCS, pp. 36–50. Springer (2005)

  158. Tiu, A.: A logic for reasoning about generic judgments. In: Momigliano, A., Pientka, B. (eds.) International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP’06), volume 173 of ENTCS, pp. 3–18 (2006)

  159. Tiu, A., Miller, D.: Proof search specifications of bisimulation and modal logics for the \(\pi \)-calculus. ACM Trans. Comput. Log. 11(2), 13 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  160. Tiu, A., Momigliano, A.: Cut elimination for a logic with induction and co-induction. J. Appl. Log. 10(4), 330–367 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  161. Tiu, A., Nadathur, G., Miller, D.: Mixing finite success and finite failure in an automated prover. In: Empirically Successful Automated Reasoning in Higher-Order Logics (ESHOL’05), pp. 79–98 (2005)

  162. Tiu, A., Nguyen, N., Horne, R.: SPEC: An equivalence checker for security protocols. In: Igarashi, A. (ed.) Programming Languages and Systems: 14th Asian Symposium, APLAS 2016, Hanoi, Vietnam, November 21 - 23, 2016, Proceedings, pp. 87–95. Springer International Publishing (2016)

  163. Tofte, M.: Type inference for polymorphic references. Inf. Comput. 89, 1–34 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  164. Urban, C.: Nominal reasoning techniques in Isabelle/HOL. J. Autom. Reason. 40(4), 327–356 (2008)

    Article  MATH  Google Scholar 

  165. Urban, C., Cheney, J., Berghofer, S.: Mechanizing the metatheory of LF. ACM Trans. Comput. Log. (TOCL) 12(2), 15 (2011)

    MathSciNet  MATH  Google Scholar 

  166. Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Nieuwenhuis, R. (ed.) 20th Conference on Automated Deduction (CADE), volume 3632 of LNCS, pp. 38–53. Springer (2005)

  167. van Heijenoort, J.: From Frege to Gödel: A Source Book in Mathematics, 1879-1931. Source books in the history of the sciences series. Harvard University Press, Cambridge, MA, 3rd printing, 1997 edition (1967)

  168. VanInwegen, M.: The Machine-Assisted Proof of Programming Language Properties. Ph.D. thesis, University of Pennsylvania (1996)

  169. Victor, B., Moller, F.: The mobility workbencha tool for the \(\pi \)-calculus. In: Computer Aided Verification, pp. 428–440. Springer (1994)

  170. Wang, Y.: A Higher-Order Abstract Syntax Approach to the Verified Compilation of Functional Programs. Ph.D. thesis, University of Minnesota (2016)

  171. Wang, Y., Chaudhuri, K., Gacek, A., Nadathur, G.: Reasoning about higher-order relational specifications. In: Schrijvers, T. (ed.) Proceedings of the 15th International Symposium on Princples and Practice of Declarative Programming (PPDP), pp. 157–168, Madrid, Spain (2013)

  172. Wang, Y., Nadathur, G.: A higher-order abstract syntax approach to verified transformations on functional programs. In: Thiemann, P. (ed.) Programming Languages and Systems—25th European Symposium on Programming, ESOP 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2–8, 2016, Proceedings, volume 9632 of Lecture Notes in Computer Science, pp. 752–779. Springer (2016)

Download references

Acknowledgements

I thank Gopalan Nadathur and the anonymous reviewers for their many helpful comments on an earlier draft of this paper. This work was funded in part by the ERC Advanced Grant ProofCert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale Miller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, D. Mechanized Metatheory Revisited. J Autom Reasoning 63, 625–665 (2019). https://doi.org/10.1007/s10817-018-9483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-018-9483-3

Keywords

Navigation