Journal of Automated Reasoning

, Volume 57, Issue 2, pp 97–134 | Cite as

A Superposition Calculus for Abductive Reasoning



We present a modification of the Superposition Calculus that is meant to generate consequences of sets of first-order axioms. This approach is proven to be sound and deductive-complete in the presence of redundancy elimination rules, provided the considered consequences are built on a given finite set of ground terms, represented by constant symbols. In contrast to other approaches, most existing results about the termination of the Superposition calculus can be carried over to our procedure. This ensures in particular that the calculus is terminating for many theories of interest to the SMT community.


Equational first-order logic Abduction Superposition calculus  Deductive-completeness 

Mathematics Subject Classification

03B35 68T15 


  1. 1.
    Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic sup(la). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009, LNCS, vol. 5749, pp. 84–99. Springer, Berlin (2009)Google Scholar
  2. 2.
    Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. Inf. Comput. 183(2), 140–164 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. ACM Trans. Comput. Log. 10(1), 129–179 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)CrossRefMATHGoogle Scholar
  5. 5.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Log. Comput. 3(4), 217–247 (1994)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5(3), 193–212 (1994)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. Bonacina, 39–57 (2013)Google Scholar
  8. 8.
    Baumgartner, P., Bax, J., Waldmann, U.: Finite quantification in hierarchic theorem proving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR, Lecture Notes in Computer Science, vol. 8562, pp. 152–167. Springer, Berlin (2014)Google Scholar
  9. 9.
    Bonacina, M.P. (ed.): Automated Deduction—CADE-24—24th International Conference on Automated Deduction, Lake Placid, NY, USA, June 9–14, 2013. Proceedings, Lecture Notes in Computer Science, vol. 7898. Springer, Berlin (2013)Google Scholar
  10. 10.
    Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: Verit: an open, trustable and efficient smt-solver. In: Schmidt, R.A. (ed.) Proceedings of the Conference on Automated Deduction (CADE), Lecture Notes in Computer Science. Springer, Berlin (2009)Google Scholar
  11. 11.
    Caferra, R., Leitsch, A., Peltier, N.: Automated Model Building, Applied Logic Series, vol. 31. Kluwer, Dordrecht (2004)CrossRefMATHGoogle Scholar
  12. 12.
    De Kleer, J.: An improved incremental algorithm for generating prime implicates. In: Proceedings of the National Conference on Artificial Intelligence, pp. 780–780. Wiley, London (1992)Google Scholar
  13. 13.
    de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS, LNCS, vol. 4963, pp. 337–340. Springer, Berlin (2008)Google Scholar
  14. 14.
    Dillig, I., Dillig, T., Aiken, A.: Small formulas for large programs: on-line constraint simplification in scalable static analysis. In: Cousot, R., Martel, M. (eds.) SAS, Lecture Notes in Computer Science, vol. 6337, pp. 236–252. Springer, Berlin (2010)Google Scholar
  15. 15.
    Dillig, I., Dillig, T., McMillan, K.L., Aiken, A.: Minimum satisfying assignments for SMT. In: Madhusudan, P., Seshia, S.A. (eds.) CAV, Lecture Notes in Computer Science, vol. 7358, pp. 394–409. Springer, Berlin (2012)Google Scholar
  16. 16.
    Dutertre, D., de Moura, L.: The YICES SMT-solver. In: SMT-COMP: Satisfiability Modulo Theories Competition. (2006)
  17. 17.
    Echenim, M., Peltier, N.: A calculus for generating ground explanations. In: Proceedings of the International Joint Conference on Automated Reasoning (IJCAR’12), LNCS, vol. 7364, pp. 194–209. Springer, Berlin (2012)Google Scholar
  18. 18.
    Echenim, M., Peltier, N., Tourret, S.: An approach to abductive reasoning in equational logic. In: Proceedings of IJCAI’13 (International Conference on Artificial Intelligence), AAAI, pp. 3–9 (2013)Google Scholar
  19. 19.
    Echenim, M., Peltier, N., Tourret, S.: A rewriting strategy to generate prime implicates in equational logic. In: Proceedings of the International Joint Conference on Automated Reasoning (IJCAR’14). Springer, Berlin (2014)Google Scholar
  20. 20.
    Henocque, L.: The prime normal form of boolean formulas. Technical report at (2002)
  21. 21.
    Jackson, P., Pais, J.: Computing prime implicants. In: 10th International Conference on Automated Deduction, pp. 543–557. Springer, Berlin (1990)Google Scholar
  22. 22.
    Kean, A., Tsiknis, G.: An incremental method for generating prime implicants/implicates. J. Symb. Comput. 9(2), 185–206 (1990)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Knill, E., Cox, P., Pietrzykowski, T.: Equality and abductive residua for horn clauses. Theor. Comput. Sci. 120, 1–44 (1992)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Leitsch, A.: The resolution calculus. In: Brauer, W., Rozenberg, G., Salomaa, A. (eds.) Texts in Theoretical Computer Science. Springer, Berlin (1997)Google Scholar
  25. 25.
    Lynch, C., Morawska, B.: Automatic decidability. In: Proceedings of 17th IEEE Symposium on Logic in Computer Science (LICS’2002), IEEE Computer Society, Copenhagen, Denmark, pp. 7–16 (2002)Google Scholar
  26. 26.
    Lynch, C., Ranise, S., Ringeissen, C., Tran, D.K.: Automatic decidability and combinability. Inf. Comput. 209(7), 1026–1047 (2011)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Marquis, P.: Extending abduction from propositional to first-order logic. In: Jorrand, P., Kelemen, J. (eds.) FAIR, Lecture Notes in Computer Science, vol. 535, pp. 141–155. Springer, Berlin (1991)Google Scholar
  28. 28.
    Matusiewicz, A., Murray, N., Rosenthal, E.: Prime implicate tries. In: Giese, M., Waaler, A. (eds.) Automated Reasoning with Analytic Tableaux and Related Methods, pp. 250–264 Springer, Oslo (2009)Google Scholar
  29. 29.
    Matusiewicz, A., Murray, N., Rosenthal, E.: Tri-based set operations and selective computation of prime implicates. In: Foundations of Intelligent Systems, pp. 203–213 (2011)Google Scholar
  30. 30.
    Mayer, M.C., Pirri, F.: First order abduction via tableau and sequent calculi. Logic J. IGPL 1(1), 99–117 (1993)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    McCarthy, J.: Computer programs for checking mathematical proofs. In: Recursive Function Theory, Proceedings of Symposia in Pure Mathematics, Volume 5, American Mathematical Society, Providence, Rhode Island, pp. 219–228 (1962)Google Scholar
  32. 32.
    Meir, O., Strichman, O.: Yet another decision procedure for equality logic. In: Proceedings of the 17th International Conference on Computer Aided Verification, CAV’05, pp. 307–320. Springer, Berlin (2005)Google Scholar
  33. 33.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 371–443. Elsevier and MIT Press, Cambridge (2001)CrossRefGoogle Scholar
  34. 34.
    Simon, L., Del Val, A.: Efficient consequence finding. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence, pp. 359–370 (2001)Google Scholar
  35. 35.
    Sofronie-Stokkermans, V.: Hierarchical reasoning for the verification of parametric systems. In: Giesl, J., Hähnle, R. (eds.) IJCAR, LNCS, vol. 6173, pp. 171–187. Springer, Berlin (2010)Google Scholar
  36. 36.
    Sofronie-Stokkermans, V.: Hierarchical reasoning and model generation for the verification of parametric hybrid systems. Bonacina 360–376 (2013)Google Scholar
  37. 37.
    Tison, P.: Generalization of consensus theory and application to the minimization of boolean functions. Electron. Comput. IEEE Trans. 4, 446–456 (1967)CrossRefMATHGoogle Scholar
  38. 38.
    Tran, D.K., Ringeissen, C., Ranise, S., Kirchner, H.: Combination of convex theories: modularity, deduction completeness, and explanation. J. Symb. Comput. 45(2), 261–286 (2010)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Tushkanova, E., Ringeissen, C., Giorgetti, A., Kouchnarenko, O.: Automatic decidability: a schematic calculus for theories with counting operators. In: van Raamsdonk, F. (ed.) RTA, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, LIPIcs, vol. 21, pp. 303–318 (2013)Google Scholar
  40. 40.
    Wernhard, C.: Abduction in logic programming as second-order quantifier elimination. In: Fontaine, P., Ringeissen, C., Schmidt, R. (eds.) Frontiers of Combining Systems, Lecture Notes in Computer Science, vol. 8152, pp. 103–119. Springer, Berlin (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.University Grenoble AlpesGrenobleFrance
  2. 2.CNRS, LIGGrenobleFrance

Personalised recommendations