Journal of Automated Reasoning

, Volume 52, Issue 4, pp 407–450 | Cite as

A Goal-Directed Decision Procedure for Hybrid PDL

  • Mark KaminskiEmail author
  • Gert Smolka


We present the first goal-directed decision procedure for hybrid PDL. The procedure is based on a modular approach that scales from basic modal logic with eventualities to hybrid PDL. The approach is designed so that nominals and eventualities are treated orthogonally. To deal with the complex programs of PDL, the approach employs a novel disjunctive program decomposition. In arguing the correctness of our approach, we employ the novel notion of support generalizing the standard notion of Hintikka sets.


Modal logic Propositional dynamic logic Hybrid logic Decision procedures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abate, P., Goré, R., Widmann, F.: An on-the-fly tableau-based decision procedure for PDL-satisfiability. In: Areces, C., Demri, S. (eds.) M4M-5, Electron. Notes Theor. Comput. Sci., vol. 231, pp. 191–209. Elsevier (2009)Google Scholar
  2. 2.
    Antimirov, V.: Partial derivatives of regular expressions and finite automaton constructions. Theor. Comput. Sci. 155(2), 291–319 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3, pp. 821–868. Elsevier (2007)Google Scholar
  4. 4.
    Baader, F.: Augmenting concept languages by transitive closure of roles: an alternative to terminological cycles. Tech. Rep. RR-90-13, DFKI (1990)Google Scholar
  5. 5.
    Ben-Ari, M., Pnueli, A., Manna, Z.: The temporal logic of branching time. Acta Inform. 20(3), 207–226 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001)Google Scholar
  7. 7.
    Bolander, T., Blackburn, P.: Termination for hybrid tableaus. J. Log. Comput. 17(3), 517–554 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bonatti, P.A., Lutz, C., Murano, A., Vardi, M.Y.: The complexity of enriched μ-calculi. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I., (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 540–551. Springer (2006)Google Scholar
  9. 9.
    Brünnler, K., Lange, M.: Cut-free systems for temporal logic. J. Log. Algebr. Program. 76(2), 216–225 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Cerrito, S., Cialdea Mayer, M.: An efficient approach to nominal equalities in hybrid logic tableaux. J. Appl. Non-Class. Log. 20(1–2), 39–61 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Kozen, D. (ed.) Logics of Programs. LNCS, vol. 131, pp. 52–71. Springer (1982)Google Scholar
  13. 13.
    De Giacomo, G., Massacci, F.: Combining deduction and model checking into tableaux and algorithms for converse-PDL. Inf. Comput. 162(1–2), 117–137 (2000)CrossRefzbMATHGoogle Scholar
  14. 14.
    Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B: Formal Models and Semantics, pp. 995–1072. Elsevier (1990)Google Scholar
  15. 15.
    Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the temporal logic of branching time. J. Comput. Syst. Sci. 30(1), 1–24 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branching versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. SIAM J. Comput. 29(1), 132–158 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Emerson, E.A., Sistla, A.P.: Deciding full branching time logic. Inf. Control 61(3), 175–201 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18(2), 194–211 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Goré, R., Widmann, F.: An optimal on-the-fly tableau-based decision procedure for PDL-satisfiability. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 437–452. Springer (2009)Google Scholar
  21. 21.
    Goré, R., Widmann, F.: Optimal tableaux for propositional dynamic logic with converse. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 225–239. Springer (2010)Google Scholar
  22. 22.
    Götzmann, D., Kaminski, M., Smolka, G.: Spartacus: a tableau prover for hybrid logic. In: Bolander, T., Braüner, T. (eds.) M4M-6. Electron. Notes Theor. Comput. Sci., vol. 262, pp. 127–139. Elsevier (2010)Google Scholar
  23. 23.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press (2000)Google Scholar
  24. 24.
    Hintikka, K.J.J.: Form and content in quantification theory. Two papers on symbolic logic. Acta Philos. Fenn. 8, 7–55 (1955)MathSciNetGoogle Scholar
  25. 25.
    Hoffmann, G.: Lightweight hybrid tableaux. J. Appl. Log. 8(4), 397–408 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Hoffmann, G., Areces, C.: HTab: a terminating tableaux system for hybrid logic. In: Areces, C., Demri, S. (eds.) M4M-5. Electron. Notes Theor. Comput. Sci., vol. 231, pp. 3–19. Elsevier (2009)Google Scholar
  27. 27.
    Horrocks, I.: Implementation and optimization techniques. In: Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F., (eds.) The Description Logic Handbook: Theory, Implementation and Applications, 2nd edn., pp. 329–373. Cambridge University Press (2007)Google Scholar
  28. 28.
    Horrocks, I., Sattler, U.: Ontology reasoning in the SHOQ(D) description logic. In: Nebel, B. (ed.) IJCAI 2001, pp. 199–204. Morgan Kaufmann (2001)Google Scholar
  29. 29.
    Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. J. Autom. Reasoning 39(3), 249–276 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Jungteerapanich, N.: A tableau system for the modal μ-calculus. In: Giese, M., Waaler, A., (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 220–234. Springer (2009)Google Scholar
  31. 31.
    Kaminski, M.: Incremental decision procedures for modal logics with nominals and eventualities. Ph.D. thesis, Saarland University (2012)Google Scholar
  32. 32.
    Kaminski, M., Schneider, T., Smolka, G.: Correctness and worst-case optimality of Pratt-style decision procedures for modal and hybrid logics. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 196–210. Springer (2011)Google Scholar
  33. 33.
    Kaminski, M., Smolka, G.: Terminating tableau systems for hybrid logic with difference and converse. J. Log. Lang. Inf. 18(4), 437–464 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Kaminski, M., Smolka, G.: Terminating tableaux for hybrid logic with eventualities. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 240–254. Springer (2010)Google Scholar
  35. 35.
    Kaminski, M., Smolka, G.: Clausal tableaux for hybrid PDL. In: van Ditmarsch, H., Duque, D.F., Goranko, V., Jamroga, W., Ojeda-Aciego, M., (eds.) M4M-7. Electron. Notes Theor. Comput. Sci., vol. 278, pp. 99–113. Elsevier (2011)Google Scholar
  36. 36.
    Kaplan, D.M.: Regular expressions and the equivalence of programs. J. Comput. Syst. Sci. 3(4), 361–386 (1969)CrossRefzbMATHGoogle Scholar
  37. 37.
    Kowalski, R.: Logic for Problem Solving. North-Holland (1979)Google Scholar
  38. 38.
    Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27, 333–354 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Kozen, D., Smith, F.: Kleene algebra with tests: completeness and decidability. In: van Dalen, D., Bezem, M. (eds.) CSL’96. LNCS, vol. 1258, pp. 244–259. Springer (1996)Google Scholar
  40. 40.
    Kripke, S.A.: Semantical analysis of modal logic I: normal modal propositional calculi. Z. Math. Log. Grundl. Math. 9, 67–96 (1963)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Lange, M., Lutz, C.: 2-ExpTime lower bounds for propositional dynamic logic with intersection. J. Symb. Log. 70(4), 1072–1086 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Lemmon, E.J., Scott, D.: The ‘Lemmon Notes’: An Introduction to Modal Logic. Blackwell (1977)Google Scholar
  43. 43.
    Lichtenstein, O., Pnueli, A.: Propositional temporal logics: decidability and completeness. L. J. IGPL 8(1), 55–85 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Nguyen, L.A., Szałas, A.: Checking consistency of an ABox w.r.t. global assumptions in PDL. Fundam. Inform. 102(1), 97–113 (2010)zbMATHGoogle Scholar
  45. 45.
    Pnueli, A.: The temporal logic of programs. In: FOCS ’77, pp. 46–57. IEEE Computer Society Press (1977)Google Scholar
  46. 46.
    Pratt, V.R.: Models of program logics. In: Proc. 20th Annual Symp. on Foundations of Computer Science (FOCS’79), pp. 115–122. IEEE Computer Society Press (1979)Google Scholar
  47. 47.
    Pratt, V.R.: A near-optimal method for reasoning about action. J. Comput. Syst. Sci. 20(2), 231–254 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Reynolds, M.: A faster tableau for CTL*. In: Puppis, G., Villa, T., (eds.) GandALF 2013. Electron. Proc. Theor. Comput. Sci., vol. 119, pp. 50–63 (2013)Google Scholar
  49. 49.
    Sattler, U., Vardi, M.Y.: The hybrid μ-calculus. In: Goré, R., Leitsch, A., Nipkow, T., (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 76–91. Springer (2001)Google Scholar
  50. 50.
    Schmidt, R.A., Tishkovsky, D.: A general tableau method for deciding description logics, modal logics and related first-order fragments. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 194–209. Springer (2008)Google Scholar
  51. 51.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007)CrossRefGoogle Scholar
  52. 52.
    Tsarkov, D., Horrocks, I.: FaCT+ + description logic reasoner: system description. In: Furbach, U., Shankar, N., (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 292–297. Springer (2006)Google Scholar
  53. 53.
    Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimizing terminological reasoning for expressive description logics. J. Autom. Reasoning 39(3), 277–316 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Widmann, F.: Tableaux-based decision procedures for fixed point logics. Ph.D. thesis, Australian National University (2010)Google Scholar
  55. 55.
    Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1–2), 72–99 (1983)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK
  2. 2.Saarland UniversitySaarbrückenGermany

Personalised recommendations