Journal of Automated Reasoning

, Volume 52, Issue 4, pp 361–378 | Cite as

Using Isabelle/HOL to Verify First-Order Relativity Theory

  • Mike StannettEmail author
  • István Németi


Logicians at the Rényi Mathematical Institute in Budapest have spent several years developing versions of relativity theory (special, general, and other variants) based wholly on first-order logic, and have argued in favour of the physical decidability, via exploitation of cosmological phenomena, of formally unsolvable questions such as the Halting Problem and the consistency of set theory. As part of a joint project, researchers at Sheffield have recently started generating rigorous machine-verified versions of the Hungarian proofs, so as to demonstrate the soundness of their work. In this paper, we explain the background to the project and demonstrate a first-order proof in Isabelle/HOL of the theorem “no inertial observer can travel faster than light”. This approach to physical theories and physical computability has several pay-offs, because the precision with which physical theories need to be formalised within automated proof systems forces us to recognise subtly hidden assumptions.


Isabelle/HOL First-order relativity theory Hypercomputation Physics and computation 

CR Subject Classification

F.4.1 J.2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andréka, H., Madarász, J.X., Németi, I.: Logical analysis of relativity theories. In: Hendricks, H., et al. (eds.) First-Order Logic Revisited, pp. 1–30. Logos-Verlag, Berlin (2004)Google Scholar
  2. 2.
    Andréka, H., Madarász, J.X., Németi, I., Székely, G.: Axiomatizing relativistic dynamics without conservation postulates. Stud. Logica 89(2), 163–186 (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Wenzel, M.: The Isabelle/Isar reference manual. Online: (2012)
  4. 4.
    Einstein, A.: Relativity: The Special and General Theory. Henry Holt, New York (1920)Google Scholar
  5. 5.
    Andréka, H., Madarász, J.X., Németi, I., Székely, G.: A logic road from special relativity to general relativity. Synthese 186(3), 633–649 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc., Series 2 42, 230–265 (1937, submitted May 1936)CrossRefGoogle Scholar
  7. 7.
    Hogarth, M.: Does general relativity allow an observer to view an eternity in a finite time? Found. Phys. Lett. 5, 173–181 (1992)MathSciNetGoogle Scholar
  8. 8.
    Earman, J., Norton, J.: Forever is a day: supertasks in Pitowsky and Malament-Hogarth spacetimes. Philos. Sci. 5, 22–42 (1993)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Etesi, G., Németi, I.: Non-turing computations via Malament-Hogarth space-times. Int. J. Theor. Phys. 41, 341–370 (2002). Online: arXiv: gr-qc/0104023v2 CrossRefzbMATHGoogle Scholar
  10. 10.
    Hogarth, M.: Deciding arithmetic using SAD computers. Br. J. Philos. Sci. 55, 681–691 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Manchak, J.B.: On the possibility of supertasks in general relativity. Found. Phys. 40, 276–288 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Andréka, H., Németi, I., Székely, G.: Closed timelike curves in relativistic computation. Online: arXiv: 1105.0047 [gr-qc] (2012)
  13. 13.
    Stannett, M.: The case for hypercomputation. Appl. Math. Comput. 178, 8–24 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Székely, G.: First-order logic investigation of relativity theory with an emphasis on accelerated observers. PhD thesis, Eötvös Loránd University (2009). Online:
  15. 15.
    Gömöri, M., Szabó, L.E.: On the formal statement of the special principle of relativity. Online: (2011)
  16. 16.
    Sundar G., N., Bringsjord, S., Taylor, J.: Proof verification and proof discovery for relativity. In: First International Conference on Logic and Relativity: Honoring István Németi’s 70th birthday, 8–12 September 2012, Budapest. Rényi Institute, Budapest (2012). Online:
  17. 17.
    Csuhaj-Varjú, E., Gheorghe, M., Stannett, M.: P systems controlled by general topologies. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC. Lecture Notes in Computer Science, vol. 7445, pp. 70–81. Springer, Berlin (2012)Google Scholar
  18. 18.
    Németi, P., Székely, G.: Existence of faster than light signals implies hypercomputation already in special relativity. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) How the World Computes: Turing Centenary Conference and 8th Conference on Computability in Europe, CiE 2012, 18–23 June 2012, Cambridge, UK, Proceedings. Lecture Notes in Computer Science, vol. 7318, pp. 528–538. Springer, Berlin Heidelberg (2012)Google Scholar
  19. 19.
    Székely, G.: The existence of superluminal particles is consistent with the kinematics of Einstein’s special theory of relativity. Online: arXiv:1202.5790 [physics.gen-ph] (2012)
  20. 20.
    Madarász, J.X., Németi, I., Székely, G.: Twin Paradox and the logical foundation of relativity theory. Found. Phys. 36(5), 681–714 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Stannett, M.: Membrane systems and hypercomputation. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds) Membrane Computing. Lecture Notes in Computer Science, vol. 7762, pp. 78–87. Springer, Berlin Heidelberg (2013)Google Scholar
  23. 23.
    Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F., Ott, T.: Monitoring stellar orbits around the massive black hole in the Galactic center. Astrophys. J. 692, 1075–1109 (2009)CrossRefGoogle Scholar
  24. 24.
    Németi, I., Dávid, G.: Relativistic computers and the Turing barrier. Appl. Math. Comput. 178, 118–142 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Németi, I., Andréka, H.: Can general relativistic computers break the Turing barrier? In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) Logical Approaches to Computational Barriers, Second Conference on Computability in Europe, CiE 2006, July 2006, Swansea, UK, Proceedings. Lecture Notes in Computer Science, vol. 3988, pp. 398–412. Springer, Berlin Heidelberg (2006)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of SheffieldSheffieldUK
  2. 2.Alfréd Rényi Institute of Mathematics of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations