Ainouche, A.: Quasi-claw-free graphs. Discrete Math. 179(1–3), 13–26 (1998)
Article
MATH
MathSciNet
Google Scholar
Alkassar, E., Böhme, S., Mehlhorn, K., Rizkallah, C.: Verification of certifying computations. In: Gopalakrishnan, G., Qadeer, S., (eds.) CAV, Lecture Notes in Computer Science, vol. 6806, pp. 67–82. Springer (2011)
Bang-Jensen, J., Gutin, G.: Digraphs Theory, Algorithms and Applications, 1st edn. Springer, Berlin (2000)
Google Scholar
Beineke, L.: Beiträge zur Graphentheorie, chap. Derived graphs and digraphs. Teubner, Leipzig (1968)
Google Scholar
Beineke, L.: Characterizations of derived graphs. J. Comb. Theory, Ser. B 9, 129–135 (1970)
Article
MATH
MathSciNet
Google Scholar
Belinfante, J.G.F.: On a modification of Gödel’s algorithm for class formation. AAR Newsletter 34, 10–15 (1996)
Google Scholar
Belinfante, J.G.F.: On computer-assisted proofs in ordinal number theory. J. Autom. Reason. 22(2), 341–378 (1999)
Article
MATH
MathSciNet
Google Scholar
Belinfante, J.G.F.: Gödel’s algorithm for class formation. In: McAllester, D.A. (ed.) CADE, Lecture Notes in Computer Science, vol. 1831, pp. 132–147. Springer (2000)
Belinfante, J.G.F.: Computer proofs about finite and regular sets: the unifying concept of subvariance. J. Symb. Comput. 36(1–2), 271–285 (2003)
Article
MATH
MathSciNet
Google Scholar
Belinfante, J.G.F.: Reasoning about iteration in Gödel’s class theory. In: Baader, F. (ed.) CADE, Lecture Notes in Computer Science, vol. 2741, pp. 228–242. Springer (2003)
Berge, C.: Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10, 114 (1961)
Google Scholar
Boyer, R.S., Lusk, E.L., McCune, W., Overbeek, R.A., Stickel, M.E., Wos, L.: Set theory in first-order logic: Clauses for Gödel’s axioms. J. Autom. Reason. 2(3), 287–327 (1986)
Article
MATH
Google Scholar
Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, Monographs on Discrete Mathematics and Applications, vol. 3. SIAM Society for Industrial and Applied Mathematics, Philadelphia (1999)
Book
Google Scholar
Brown, C.E.: Combining type theory and untyped set theory. In: Furbach, U., Shankar, N. (eds.) IJCAR, Lecture Notes in Computer Science, vol. 4130, pp. 205–219. Springer (2006)
Burstall, R., Goguen, J.: Putting theories together to make specifications. In: Reddy, R. (ed.) Proc. 5th International Joint Conference on Artificial Intelligence, pp. 1045–1058. Cambridge, MA (1977)
Cantone, D., Omodeo, E.G., Schwartz, J.T., Ursino, P.: Notes from the logbook of a proof-checker’s project. In: Dershowitz, N. (ed.) Verification: Theory and Practice, Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday, Lecture Notes in Computer Science, vol. 2772, pp. 182–207. Springer (2003)
Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164(1), 51–229 (2006)
Article
MATH
MathSciNet
Google Scholar
Chudnovsky, M., Seymour, P.D.: Claw-free graphs. I. Orientable prismatic graphs. J. Comb. Theory, Ser. B 97(6), 867–903 (2007)
Article
MATH
MathSciNet
Google Scholar
Chudnovsky, M., Seymour, P.D.: Claw-free graphs. VI. Colouring. J. Comb. Theory, Ser. B 100(6), 560–572 (2010)
Article
MATH
MathSciNet
Google Scholar
Eaton, N., Grable, D.A.: Set intersection representations for almost all graphs. J. Graph Theory 23(3), 309–320 (1996)
Article
MATH
MathSciNet
Google Scholar
Faudree, R., Flandrin, E., Ryjáček, Z.: Claw-flee graphs—a survey. Discrete Math. 164, 87–147 (1997)
Article
MATH
MathSciNet
Google Scholar
Ferro, A., Omodeo, E.G., Schwartz, J.T.: Decision procedures for elementary sublanguages of set theory. I. Multi-level syllogistic and some extensions. Commun. Pure Appl. Math. 33(5), 599–608 (1980)
Article
MATH
MathSciNet
Google Scholar
Ferro, A., Omodeo, E.G., Schwartz, J.T.: Decision procedures for some fragments of set theory. In: Bibel, W., Kowalski, R. (eds.) Proc. 5th Conference on Automated Deduction, LNCS, vol. 87, pp. 88–96. Springer-Verlag (1980)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer Berlin/Heidelberg (2005)
Formisano, A., Omodeo, E.G.: Theory-specific automated reasoning. In: Dovier, A., Pontelli, E. (eds.) A 25-Year Perspective on Logic Programming: Achievements of the Italian Association for Logic Programming, GULP, Lecture Notes in Computer Science, vol. 6125, pp. 37–63. Springer (2010)
Golumbic, M.C.: Interval graphs and related topics. Discrete Math. 55(2), 113–121 (1985)
Article
MATH
MathSciNet
Google Scholar
Golumbic, M.C.: Algorithmic aspects of intersection graphs and representation hypergraphs. Graphs Comb. 4(1), 307–321 (1988)
Article
MATH
MathSciNet
Google Scholar
Gonthier, G.: Formal proof—the four-color theorem. Not. Am. Math. Soc. 55(11), 1382–1393 (2008)
MATH
MathSciNet
Google Scholar
Hendry, G., Vogler, W.: The square of a connected S(K
1,3)-free graph is vertex pancyclic. J. Graph Theory 9(4), 535–537 (1985)
Article
MATH
MathSciNet
Google Scholar
Jünger, M., Reinelt, G., Pulleyblank, W.R.: On partitioning the edges of graphs into connected subgraphs. J. Graph Theory 9(4), 539–549 (1985)
Article
MATH
MathSciNet
Google Scholar
Levy, A.: Basic Set Theory. Springer, Berlin (1979)
Book
MATH
Google Scholar
Matthews, M.M., Sumner, D.P.: Hamiltonian Results in K
1,3-Free Graphs. J. Graph Theory 8, 139–146 (1984)
Article
MATH
MathSciNet
Google Scholar
Matuszewski, R., Rudnicki, P.: Mizar: the first 30 years. Mechanized Mathematics and its Applications 4(1), 3–24 (2005)
Google Scholar
Milanič, M., Tomescu, A.I.: Set graphs. I. Hereditarily finite sets and extensional acyclic orientations. Discrete Appl. Math. (2011). doi:10.1016/j.dam.2011.11.027
Google Scholar
Moore, J.S., Zhang, Q.: Proof pearl: Dijkstra’s shortest path algorithm verified with ACL2. In: Proceedings of the 18th international conference on Theorem Proving in Higher Order Logics, TPHOLs’05, pp. 373–384. Springer-Verlag, Berlin, Heidelberg (2005)
Chapter
Google Scholar
Nordhoff, B., Lammich, P.: Dijkstra’s shortest path algorithm. Archive of Formal Proofs (2012). http://afp.sourceforge.net/entries/Dijkstra_Shortest_Path.shtml, Formal proof development
Omodeo, E.G.: The Ref proof-checker and its “common shared scenario”. In: Davis, M., Schonberg, E. (eds.) From Linear Operators to Computational Biology: Essays in Memory of Jacob T. Schwartz, pp. 121–131. Springer (2012)
Omodeo, E.G., Cantone, D., Policriti, A., Schwartz, J.T.: A Computerized Referee. In: Stock, O., Schaerf, M. (eds.) Reasoning, Action and Interaction in AI Theories and Systems—Essays Dedicated to Luigia Carlucci Aiello, LNAI, vol. 4155, pp. 117–139. Springer (2006)
Omodeo, E.G., Schwartz, J.T.: A ‘theory’ mechanism for a proof-verifier based on first-order set theory. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part II, Lecture Notes in Computer Science, vol. 2408, pp. 214–230. Springer (2002)
Omodeo, E.G., Tomescu, A.I.: Appendix: claw-free graphs as sets. In: Davis, M., Schonberg, E. (eds.) From Linear Operators to Computational Biology: Essays in Memory of Jacob T. Schwartz, pp. 131–167. Springer (2012)
Parthasarathy, K.R., Ravindra, G.: The strong perfect-graph conjecture is true for K
1,3-free graphs. J. Combin. Theory, Ser. B 21(3), 212–223 (1976)
Article
MATH
MathSciNet
Google Scholar
Quaife, A.: Automated deduction in von Neumann-Bernays-Gödel set theory. J. Automat. Reason. 8(1), 91–147 (1992)
MATH
MathSciNet
Google Scholar
Ryjáček, Z.: Almost claw-free graphs. J. Graph Theory 18(5), 469–477 (1994)
Article
MATH
MathSciNet
Google Scholar
Schwartz, J.T., Cantone, D., Omodeo, E.G.: Computational Logic and Set Theory. Springer (2011). Foreword by Martin Davis
Sumner, D.: Graphs with 1-factors. Proc. Amer. Math. Soc. 42, 8–12 (1974)
MATH
MathSciNet
Google Scholar
Szpilrajn-Marczewski, E.: Sur deux propriétés des classes d’ensemble. Fund. Math. 33, 303–307 (1945)
MATH
MathSciNet
Google Scholar
Tarski, A.: Sur les ensembles fini. Fund. Math. VI, 45–95 (1924)
Google Scholar
Tarski, A., Givant, S.: A formalization of set theory without variables. In: Colloquium Publications, vol. 41. American Mathematical Society (1987)
Verbeek, F., Schmaltz, J.: Proof pearl: a formal proof of Dally and Seitz’ necessary and sufficient condition for deadlock-free routing in interconnection networks. J. Autom. Reason. 48(4), 419–439 (2012)
Article
MATH
MathSciNet
Google Scholar
Vergnas, M.L.: A note on matchings in graphs. Cahiers Centre Etudes Rech. Opér. 17, 257–260 (1975)
MATH
Google Scholar
Wenzel, M., Wiedijk, F.: A comparison of Mizar and Isar. J. Autom. Reason. 29(3–4), 389–411 (2002)
Article
MATH
MathSciNet
Google Scholar
Wiedijk, F.: Mizar: An impression. http://www.cs.ru.nl/~freek/mizar/mizarintro.ps.gz (1999). Accessed 1 April 2012
Wos, L.: The problem of finding an inference rule for set theory. J. Autom. Reason. 5(1), 93–95 (1989)
MATH
MathSciNet
Google Scholar